Greatest common divisors (GCD) over algebraic number fields are computed
by cr_gcda()
function. This function computes GCD by using modular
computation and Chinese remainder theorem and it works for the case
where the ground field is a multiple extension.
[63] A=newalg(t^9-15*t^6-87*t^3-125); (#0) [64] B=newalg(75*s^2+(10*A^7-175*A^4-470*A)*s+3*A^8-45*A^5-261*A^2); (#1) [65] P1=75*x^2+(150*B+10*A^7-175*A^4-395*A)*x+(75*B^2+(10*A^7-175*A^4-395*A)*B +13*A^8-220*A^5-581*A^2)$ [66] P2=x^2+A*x+A^2$ [67] cr_gcda(P1,P2); 27*x+((#0^6-19*#0^3-65)*#1-#0^7+19*#0^4+38*#0)
Go to the first, previous, next, last section, table of contents.