Go to the first, previous, next, last section, table of contents.
- dp_red(dpoly1,dpoly2,dpoly3)
-
- dp_red_mod(dpoly1,dpoly2,dpoly3,mod)
-
:: Single reduction operation
- return
-
list
- dpoly1, dpoly2, dpoly3
-
distributed polynomial
- vlist
-
list
- mod
-
prime
-
Reduces a distributed polynomial, dpoly1 + dpoly2,
by dpoly3 for single time.
-
An input for
dp_red_mod()
must be converted into a distributed
polynomial with coefficients in a finite field.
-
This implies that
the divisibility of the head term of dpoly2 by the head term of
dpoly3 is assumed.
-
When integral coefficients, computation is so carefully performed that
no rational operations appear in the reduction procedure.
It is computed for integers a and b, and a term t as:
a(dpoly1 + dpoly2)-bt dpoly3.
-
The result is a list
[a dpoly1,a dpoly2 - bt dpoly3]
.
[157] D=(3)*<<2,1,0,0,0>>+(3)*<<1,2,0,0,0>>+(1)*<<0,3,0,0,0>>;
(3)*<<2,1,0,0,0>>+(3)*<<1,2,0,0,0>>+(1)*<<0,3,0,0,0>>
[158] R=(6)*<<1,1,1,0,0>>;
(6)*<<1,1,1,0,0>>
[159] C=12*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>;
(12)*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>
[160] dp_red(D,R,C);
[(6)*<<2,1,0,0,0>>+(6)*<<1,2,0,0,0>>+(2)*<<0,3,0,0,0>>,(-1)*<<0,1,1,1,0>>
+(-1)*<<1,1,0,0,1>>]
- References
-
section
dp_mod
, dp_rat
.
Go to the first, previous, next, last section, table of contents.