Go to the first, previous, next, last section, table of contents.
- dp_mbase(dplist)
-
:: Computes the monomial basis
- return
-
list of distributed polynomial
- dplist
-
list of distributed polynomial
-
Assuming that dplist is a list of distributed polynomials which
is a Groebner basis with respect to the current ordering type and
that the ideal I generated by dplist in K[X] is zero-dimensional,
this function computes the monomial basis of a finite dimenstional K-vector
space K[X]/I.
-
The number of elements in the monomial basis is equal to the
K-dimenstion of K[X]/I.
[215] K=katsura(5)$
[216] V=[u5,u4,u3,u2,u1,u0]$
[217] G0=gr(K,V,0)$
[218] H=map(dp_ptod,G0,V)$
[219] map(dp_ptod,dp_mbase(H),V)$
[u0^5,u4*u0^3,u3*u0^3,u2*u0^3,u1*u0^3,u0^4,u3^2*u0,u2*u3*u0,u1*u3*u0,
u1*u2*u0,u1^2*u0,u4*u0^2,u3*u0^2,u2*u0^2,u1*u0^2,u0^3,u3^2,u2*u3,u1*u3,
u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0,1]
- References
-
section
gr
, hgr
, gr_mod
, dgr
.
Go to the first, previous, next, last section, table of contents.