1 Introduction

1.1 Organization of the Manual

This manual is organized as follows.

1. **Introduction**
 Organization of the Manual, notation and how to get Risa/Asir

2. **Risa/Asir**
 Summary of Asir, Installation

3. **Types**
 Types in Asir

4. **Asir user language**
 Description of Asir user language

5. **Debugger**
 Description of the debugger of Asir user language

6. **Built-in function**
 Detailed description of various built-in functions

7. **Distributed computation**
 Description of functions for distributed computation

8. **Groebner bases**
 Description of functions and operations for Groebner basis computation

9. **Algebraic numbers**
 Description of functions and operations for algebraic numbers

10. **Finite fields**
 Description of functions and operations on finite fields

11. **Appendix**
 Syntax in detail, description of sample files, interfaces for input from keyboard, changes, references

1.2 Notation

In this manual, we shall use several notations, which is described here

- The name of a function is written in a **typewriter type**

gcd(), gr()

- For the description of a function, its argument is written in a **slanted type**.

int, poly

- A file name is written in a ‘**typewriter type with single quotes’**

dbxinit’, ‘asir_plot’

- An example is indented and written in a **typewriter type**.

[0] 1;
 1
 [1] quit;
References are made by a typewriter type bracketed by \[].

[Boehm,Weiser]

Arguments (actual parameters) of a function are optional when they are bracketed by \[]'s. The repeatable items (including non-existence of the item) are bracketed by \[*]'s.

\setprec([u]), \diff(rat[,varn]*)

The prompt from the shell (csh) is denoted, as it is, by \% . The prompt, however, is denoted by \# , when you are assumed to be working as the root, for example, at the installation.

\% cat afo
 afo
 bfo
 \% su
 Password: XXXX
cp asir /usr/local/bin
exit
\%

The rational integer ring is denoted by \Z , the rational number field by \Q , the real number field by \R , and the complex number field by \C .

1.3 How to get Risa/Asir

Binaries for various platforms, documents, sample files, utilities are available via ftp from

ftp://archives.cs.ehime-u.ac.jp/pub/asir2000/

There are sub-directories whose names denote the name of platforms (‘windows’, ‘linux-libc6’ etc.) and a PostScript formatted manual.

The \textbf{PARI} source code is available as

ftp://megrez.ceremab.u-bordeaux.fr/pub/pari/unix/pari-2.0.17.beta.tar.gz
2 Risa/Asir

2.1 Risa and Asir

Risa is the name of whole libraries of a computer algebra system which is under development at FUJITSU LABORATORIES LIMITED. The structure of Risa is as follows.

- **The basic algebraic engine**
 This is the part which performs basic algebraic operations, such as arithmetic operations, to algebraic objects, e.g., numbers and polynomials, which are already converted into internal forms. It exists, like ‘libc.a’ of UNIX, as a library of ordinary UNIX system. The algebraic engine is written mainly in C language and partly in assembler. It serves as the basic operation part of Asir, a standard language interface of Risa.

- **Memory Manager**
 Risa employs, as its memory management component (the memory manager), a free software distributed by Boehm (gc-5.0alpha2). It is proposed by [Boehm,Weiser], and developed by Boehm and his colleagues. The memory manager has a memory allocator which automatically reclaims garbages, i.e., allocated but unused memories, and refreshes them for further use. The algebraic engine gets all its necessary memories through the memory manager.

- **Asir**
 Asir is a standard language interface of Risa’s algebraic engine. It is one of the possible language interfaces, because one can develop one’s own language interface easily on Risa system. Asir is an example of such language interfaces. Asir has very similar syntax and semantics as C language. Furthermore, it has a debugger that provide a subset of commands of dbx, a widely used debugger of C language.

2.2 Features of Asir

As mentioned in the previous section, Asir is a standard language interface for Risa’s algebraic engine. Usually, it is provided as an executable file named asir. Main features supported for the current version of Asir is as follows.

- A C-like programming language
- Arithmetic operations (addition, subtraction, multiplication and division) on numbers, polynomials and rational expressions
- Operations on vectors and matrices
- List processing operations at the minimum
- Several Built-in functions (factorization, GCD computation, Groebner basis computation etc.)
- Useful user defined functions(e.g., factorization over algebraic number fields)
- A dbx-like debugger
- Plotting of implicit functions
- Numerical evaluation of mathematical expressions including elementary transcendental functions at arbitrary precision. This feature is in force only if PARI system (see Section 6.1.13 [pari], page 37).
• Distributed computation over UNIX

2.3 Installation

Any questions and any comments on this manual are welcome by e-mails to the following address.

risa-admin@sec.lab.fujitsu.co.jp

2.3.1 UNIX binary version

A file ‘asir.tgz’ suitable for the target machine/architecture is required. After getting it, you have to unpack it by gzip. First of all, determine a directory where binaries and library files are installed. We call the directory the library directory. The following installs the files in ‘/usr/local/lib/asir’.

gzip -dc asir.tgz | (cd /usr/local/lib; tar xf -)

In this case you don’t have to set any environment variable.

You can install them elsewhere.

% gzip -dc asir.tgz | (cd $HOME; tar xf -)

In this case you have to set the name of the library directory to the environment variable ASIR_LIBDIR.

% setenv ASIR_LIBDIR $HOME/asir

Asir itself is in the library directory. It will be convenient to create a symbolic link to it from ‘/usr/local/bin’ or the user’s search path.

ln -s /usr/local/lib/asir/asir /usr/local/bin/asir

Then you can start ‘asir’.

% /usr/local/bin/asir

This is Risa/Asir, Version 20000821.

Copyright (C) FUJITSU LABORATORIES LIMITED.

1994-2000. All rights reserved.

[0]

2.3.2 UNIX source code version

First of all you have to install PARI library. The following is a sample of installation of PARI on FreeBSD.

% su
gzip -dc pari-2.0.17.beta.tgz | tar xf -
cd pari-2.0.17.beta
./Configure
make install
make install-lib-sta

After getting ‘asir2000-src.tgz’, unpack it by gzip and install necessary files as follows.
% gzip -dc asir.tgz | tar xf -
% cd asir2000
% ./configure -oxhome /usr/local -pari -plot
% xmkmf -a
% make
% su
make install
make install-lib
make install-doc

In the above example, `/usr/local` indicates the destination of the installation. That is, the binary file `asir` is installed in `/usr/local/bin` and the library and documentation files are installed in `/usr/local/lib`. The directory name specified as an argument of `-oxhome` also indicates that PARI files are installed in that directory. If you change the destination directory, you have to modify the values of `PARINC` and `PARLIB` in `include/Risa/tmp1` appropriately.

2.3.3 Windows version

The necessary file is `asirwin.tgz`. To unpack it `gzip.exe` and `tar.exe` are necessary. They are in the same directory as `asirwin.tgz` on the ftp server. Putting them in the same directory, execute the following:

C:\...> tar xzf asirwin.tgz

Then a directory `Asir` (Asir root directory) is created, which has subdirectories named `bin` and `lib`. To set up it, invoke `bin\asirgui.exe` from Explorer and click OK. Then the name of Asir root directory is set to the following registries.

HKEY_LOCAL_MACHINE\SOFTWARE\Fujitsu\Asir\99.03.31\Directory

2.4 Command line options

Command-line options for the command `asir` are as follows.

- **-heap number**

 In Risa/Asir, 4KB is used as an unit, called block, for memory allocation. By default, 16 blocks (64KB) are allocated initially. This value can be changed by giving an option `-heap` a number parameter in unit block. Size of the heap area is obtained by a Built-in function heap(), the result of which is a number in Bytes.

- **-adj number**

 Heap area will be stretched by the memory manager, if the size of reclaimed memories is less than 1/number of currently allocated heap area. The default value for `number` is 3. If you do not prefer to stretch heap area by some reason, perhaps by restriction of available memories, but if prefer to resort to reclaiming garbages as far as possible, then a large value should be chosen for `number`, e.g., 8.

- **-norc**

 When this option is specified, Asir does not read the initial file `$HOME/.asirrc`.
-f file Instead of the standard input, file is used as the input. Upon an error, the execution immediately terminates.

-paristack number
This option specifies the private memory size for PARI (see Section 6.1.13 [pari], page 37). The unit is Bytes. By default, it is set to 1 MB.

-maxheap number
This option sets an upper limit of the heap size. The unit is Bytes. Note that the size is already limited by the value of datasync displayed by the command limit on UNIX.

2.5 Environment variable
There exist several environment variables concerning with an execution of Asir. On UNIX, an environment variable is set from shells, or in rc files of shells. On Windows NT, it can be set from [Control Panel] ->[Environment]. On Windows 95/98, it can be set in ‘c:\autoexec.bat’. Note that the setting takes effect after rebooting the machine on Windows 95/98.

- ASIR_KEY
 Asir shall not work unless a key for the machine on which Asir is invoked is given. The key consists of a string which denotes 3 word hexadecimal number, each of which has 8 hexadecimal digits. In order to run Asir for several machines, several key’s can be written together on a same file as follows.

 % cat asir_key
cf6f236c 61a35091 dddc4529 geisha
82281685 d1929945 a8bd24ca yorktown
34b75d30 63f8df93 3e881113 nyanchu

 The text after each key is neglected to the end-of-line. This is convenient to comment on the respective key. Files containing key’s are searched by the following order.
 1. File set to environment ASIR_KEY
 2. File ‘asir_key’ on the current directory.
 3. Files on the directory specified by environment ASIR_LIBDIR. (File ‘asir_key’ on ‘/usr/local/lib/asir/’, if environment ASIR_LIBDIR is not set.)

- ASIR_LIBDIR
 The library directory of Asir, i.e., the directory where , for example, files containing programs written in Asir. If not specified, on UNIX, ‘/usr/local/lib/asir’ is used by default. On Windows, ‘\lib’ in Asir root directory is used by default. This environment will be useful in a case where Asir binaries are installed on a private directory of the user.

- ASIRLOADPATH
 This environment specifies directories which contains files to be loaded by Asir command load(). Directories are separated by a ':' on UNIX, a ';' on Windows respectively. The search order is from the left to the right. After searching out all directories in ASIRLOADPATH, or in case of no specification at all, the library directory will be searched.
HOME

If Asir is invoked without -norc, ‘$HOME/.asirrc’, if exists, is executed. If HOME is not set, nothing is done on UNIX. On Windows, ‘.asirrc’ in Asir root directory is executed if it exists.

2.6 Starting and Terminating an Asir session

Run Asir, then the copyright notice and the first prompt will appear on your screen, and a new Asir session will be started.

[0]

When initialization file ‘$HOME/.asirrc’ exists, Asir interpreter executes it at first taking it as a program file written in Asir.

The prompt indicates the sequential number of your input commands to Asir. The session will terminate when you input end; or quit; to Asir. Input commands are evaluated statement by statement. A statement normally ends with its terminator ‘;’ or ‘$’. (There are some exceptions. See, syntax of Asir.) The result will be displayed when the command, i.e. statement, is terminated by a ‘;’, and will not when terminated by a ‘$’.

% asir
[0] A;
 0
[1] A=(x+y)^5;
 x^5+5*y*x^4+10*y^2*x^3+10*y^3*x^2+5*y^4*x+y^5
[2] A;
 x^5+5*y*x^4+10*y^2*x^3+10*y^3*x^2+5*y^4*x+y^5
[3] a=(x+y)^5;
 evalpv : invalid assignment
 return to toplevel
[3] a;
 a
[4] fctr(A);
 [1,1,[x+y,5]]
[5] quit;
%

In the above example, names A, a, x and y are used to identify mathematical and programming objects. There, the name A denotes a program variable (some times called simply as a program variable.) while the other names, a, x and y, denote mathematical objects, that is, indeterminates. In general, program variables have names which begin with capital letters, while names of indeterminates begin with small letters. As you can see in the example, program variables are used to hold and keep objects, such as numbers and expressions, as their values, just like variables in C programming language. Whereas, indeterminates cannot have values so that assignment to indeterminates are illegal. If one wants to get a result by substituting a value for an indeterminate in an expression, it is achieved by the function subst as the value of the function.
2.7 Interruption

To interrupt the Asir execution, input an interrupt character from the keyboard. A C-c is usually used for it. (Notice: C-x on Windows and DOS.)

\[\theta \ (x+y)-1000; \]
\[\text{C-interrupt } ?(q/t/c/d/u/w/?) \]

Here, the meaning of options are as follows.

- **q** Terminates Asir session. (Confirmation requested.)
- **t** Returns to toplevel. (Confirmation requested.)
- **c** Resumes to continue the execution.
- **d** Enters debugging mode at the next statement of the Asir program, if Asir has been executing a program loaded from a file. Note that it will sometimes take a long time before entering debugging mode when Asir is executing basic functions in the algebraic engine, (e.g., arithmetic operation, factorization etc.) Detailed description about the debugger will be given in Chapter 5 [Debugger], page 27.
- **u** After executing a function registered by register_handler() (see Section 7.5.6 [ox-reset ox_intr register_handler], page 97), returns to toplevel. A confirmation is prompted.
- **w** Displays the calling sequence up to the interruption.
- **?** Show a brief description of options.

2.8 Error handling

When arguments with illegal types are given to a built-in function, an error will be detected and the execution will be quit. In many cases, when an error is detected in a built-in function, Asir automatically enters debugging mode before coming back to toplevel. At that time, one can examine the state of the program, for example, inspect argument values just before the error occurred. Messages reported there are various depending on cases. They are reported after the internal function name. The internal function name sometimes differs from the built-in function name that is specified by the user program.

In the execution of internal functions, errors may happen by various reasons. The UNIX version of Asir will report those errors as one of the following internal error’s, and enters debugging mode just like normal errors.

SIGV
BUS ERROR

Some of the built-in functions transmit their arguments to internal operation routines without strict type-checking. In such cases, one of these two errors will be reported when an access violation caused by an illegal pointer or a NULL pointer is detected.

BROKEN PIPE

In the process communication, this error will be reported if a process attempts
to read from or to write onto the partner process when the stream to the partner process does not already exist, (e.g., terminated process.)

For UNIX version, even in such a case, the process itself does not terminate because such an error can be caught by `signal()` and recovered. To remove this weak point, complete type checking of all arguments are indispensable at the entry of a built-in function, which requires an enormous amount of re-making efforts.

2.9 Referencing results and special numbers

An `@` used for an escape character; rules currently in force are as follows.

- `@n` The evaluated result of n-th input command
- `@` The evaluated result of the last command
- `@i` The unit of imaginary number, square root of -1.
- `@pi` The number pi, the ratio of a circumference of the circle and its diameter.
- `@e` Napier’s number, the base of natural logarithm.
- `@` A generator of GF(2^m), a finite field of characteristic 2, over GF(2). It is a root of an irreducible univariate polynomial over GF(2) which is set as the defining polynomial of GF(2^m).

`@>`, `@<`, `@>=`, `@=`, `@&`, `@|`

Fist order logical operators. They are used in quantifier elimination.

```
[0] fctr(x^-10-1);
[[1,1],[x-1,1],[x+1,1],[x^4+x^3+x^2+x+1,1],[x^4-x^3+x^2-x+1,1]]
[1] @0[3];
[x^4+x^3+x^2+x+1]
[2] eval(sin(@pi/2));
1.000000000000000000000000000000000000000000000000000000000000
[3] eval(log(@e),20);
0.999999999999999999999999998
[4] @0[4][0];
x^4-x^3+x^2-x+1
[5] (1+@i)^5;
(-4-4*@i)
[6] eval(exp(@pi*@i));
-1.0000000000000000000000000000000
[7] (@1)^-9;
(@^9+@^8+@+1)
```

As you can see in the above example, results of toplevel computation can be referred to by `@` convention. This is convenient for users, while it sometimes imposes a heavy burden to the garbage collector. It may happen that GC time will rapidly increase after computing a very large expression at the toplevel. In such cases `delete_history()` (see Section 6.12.13 [delete_history], page 86) takes effect.
3 Data types

3.1 Types in Asir

In Asir, various objects described according to the syntax of Asir are translated to intermediate forms and by Asir interpreter further translated into internal forms with the help of basic algebraic engine. Such an object in an internal form has one of the following types listed below. In the list, the number coincides with the value returned by the built-in function type(). Each example shows possible forms of inputs for Asir’s prompt.

0 0

As a matter of fact, no object exists that has 0 as its identification number. The number 0 is implemented as a null (0) pointer of C language. For convenience’s sake, a 0 is returned for the input type(0).

1 number

1 2/3 14.5 3+2*0i

Numbers have sub-types. See Section 3.2 [Types of numbers], page 13.

2 polynomial (but not a number)

x afo (2.3*x+y)^10

Every polynomial is maintained internally in its full expanded form, represented as a nested univariate polynomial, according to the current variable ordering, arranged by the descending order of exponents. (See Section 8.1 [Distributed polynomial], page 107). In the representation, the indeterminate (or variable), appearing in the polynomial, with maximum ordering is called the main variable. Moreover, we call the coefficient of the maximum degree term of the polynomial with respect to the main variable the leading coefficient.

3 rational expression (not a polynomial)

(x+1)/(y^2-y-x) x/x

Note that in Risa/Asir a rational expression is not simplified by reducing the common divisors unless red() is called explicitly, even if it is possible. This is because the GCD computation of polynomials is a considerably heavy operation. You have to be careful enough in operating rational expressions.

4 list

[] [1,2,[3,4],[x,y]]

Lists are all read-only object. A null list is specified by []. There are operations for lists: car(), cdr(), cons() etc. And further more, element referencing by indexing is available. Indexing is done by putting [index]’s after a program variable as many as are required. For example,

[0] L = [[1,2,3],[4,[5,6]],7]$
[1] L[1][1];
[5,6]

Notice that for lists, matrices and vectors, the index begins with number 0. Also notice that referencing list elements is done by following pointers from
the first element. Therefore, it sometimes takes much more time to perform referencing operations on a large list than on a vectors or a matrices with the same size.

5 vector

```
newvect(3) newvect(2,[a,1])
```

Vector objects are created only by explicit execution of `newvect()` command. The first example above creates a null vector object with 3 elements. The other example creates a vector object with 2 elements which is initialized such that its 0-th element is a and 1st element is 1. The second argument for `newvect` is used to initialize elements of the newly created vector. A list with size smaller or equal to the first argument will be accepted. Elements of the initializing list is used from the left to the right. If the list is too short to specify all the vector elements, the unspecified elements are filled with as many 0’s as are required. Any vector element is designated by indexing, e.g., `[index]`. `Asir` allows any type, including vector, matrix and list, for each respective element of a vector. As a matter of course, arrays with arbitrary dimensions can be represented by vectors, because each element of a vector can be a vector or matrix itself. An element designator of a vector can be a left value of assignment statement. This implies that an element designator is treated just like a simple program variable. Note that an assignment to the element designator of a vector has effect on the whole value of that vector.

```
[0] A3 = newvect(3);
[ 0 0 0 ]
[1] for (I=0;I<3;I++)A3[I] = newvect(3);
[2] for (I=0;I<3;I++)for(J=0;J<3;J++)A3[I][J]=newvect(3);
[[[0 0 0 ] [ 0 0 0 ] [ 0 0 0 ] ]
 [ [ 0 0 0 ] [ 0 0 0 ] [ 0 0 0 ] ]
 [ [ 0 0 0 ] [ 0 0 0 ] [ 0 0 0 ] ]
 [4] A3[0];
[ [ 0 0 0 ] [ 0 0 0 ] [ 0 0 0 ] ]
[5] A3[0][0];
[ 0 0 0 ]
```

6 matrix

```
newmat(2,2) newmat(2,3,[[x,y],[z]])
```

Like vector objects, matrix objects are also created only by explicit execution of `newmat()` command. Initialization of the matrix elements are done in a similar manner with that of the vector elements except that the elements are specified by a list of lists. Each element, again a list, is used to initialize each row; if the list is too short to specify all the row elements, unspecified elements are filled with as many 0’s as are required. Like vectors, any matrix element is designated by indexing, e.g., `[index][index]`. `Asir` also allows any type, including vector, matrix and list, for each respective element of a matrix. An element designator of a matrix can also be a left value of assignment statement. This implies that an element designator is treated just like a simple program variable. Note that an assignment to the element designator of a matrix has effect on the whole
value of that matrix. Note also that every row, (not column,) of a matrix can
be extracted and referred to as a vector.

\[
\begin{bmatrix}
[0] M = \text{newmat}(2, 3);
[0 0 0]
[0 0 0]
[1] M[1];
[0 0 0]
[2] \text{type}(@@);
5
end
\]

7 string

"" "afo"

Strings are used mainly for naming files. It is also used for giving comments
of the results. Operator symbol + denote the concatenation operation of two
strings.

\[
\begin{bmatrix}
[0] "afo" + "take";
afo take
end
\]

8 structure

\[
\begin{bmatrix}
\text{newstruct}(afo)
\end{bmatrix}
\]

The type structure is a simplified version of that in C language. It is defined
as a fixed length array and each entry of the array is accessed by its name. A
name is associated with each structure.

9 distributed polynomial

\[
2^{<0,1,2,3> - 3^{<1,2,3,4>}}
\]

This is the short for ‘Distributed representation of polynomials.’ This type
is specially devised for computation of Groebner bases. Though for ordinary
users this type may never be needed, it is provided as a distinguished type that
user can operate by Asir. This is because the Groebner basis package provided
with Risa/Asir is written in the Asir user language. For details See Chapter 8
[Groebner basis computation], page 107.

10 32bit unsigned integer

11 error object

These are special objects used for OpenXM.

12 matrix over GF(2)

This is used for basis conversion in finite fields of characteristic 2.

13 MATHCAP object

This object is used to express available functionalities for Open XM.

14 first order formula

This expresses a first order formula used in quantifier elimination.
15 matrix over GF(p)
A matrix over a small finite field.

16 byte array
An array of unsigned bytes.

-1 VOID object
The object with the object identifier -1 indicates that a return value of a function is void.

3.2 Types of numbers

0 rational number
Rational numbers are implemented by arbitrary precision integers (bignum). A rational number is always expressed by a fraction of lowest terms.

1 double precision floating point number (double float)
The numbers of this type are numbers provided by the computer hardware. By default, when Asir is started, floating point numbers in a ordinary form are transformed into numbers of this type. However, they will be transformed into bigfloat numbers when the switch bigfloat is turned on (enabled) by ctrl() command.

```
[0] 1.2;
  1.2
[1] 1.2e-1000;
  0
[2] ctrl("bigfloat",1);
  1
[3] 1.2e-1000;
  1.200000000000000000513 E-1000
```
A rational number shall be converted automatically into a double float number before the operation with another double float number and the result shall be computed as a double float number.

2 algebraic number
See Chapter 9 [Algebraic numbers], page 136.

3 bigfloat
The bigfloat numbers of Asir is realized by PARI library. A bigfloat number of PARI has an arbitrary precision mantissa part. However, its exponent part admits only an integer with a single word precision. Floating point operations will be performed all in bigfloat after activating the bigfloat switch by ctrl() command. The default precision is about 9 digits, which can be specified by setprec() command.

```
[0] ctrl("bigfloat",1);
  1
```
[1] `eval(2^(-1/2));`
1.414213562373095048763788073031
[2] `setprec(100);`
9
[3] `eval(2^(-1/2));`
1.41421356237309504880168872420969807856967187537694807317654396116148

Function `eval()` evaluates numerically its argument as far as possible. Notice that the integer given for the argument of `setprec()` does not guarantee the accuracy of the result, but it indicates the representation size of numbers with which internal operations of `PARI` are performed. (Section 6.1.12 [eval deval], page 36, See Section 6.1.13 [pari], page 37)

complex number
A complex number of `Risa/Asir` is a number with the form `a + b*i`, where `i` is the unit of imaginary number, and `a` and `b` are either a rational number, double float number or bigfloat number, respectively. The real part and the imaginary part of a complex number can be taken out by `real()` and `imag()` respectively.

element of a small finite prime field
Here a small finite field means that its characteristic is less than `2^27`. At present small finite fields are used mainly for groebner basis computation, and elements in such finite fields can be extracted by taking coefficients of distributed polynomials whose coefficients are in finite fields. Such an element itself does not have any information about the field to which the element belongs, and field operations are executed by using a prime `p` which is set by `setmod()`.

element of large finite prime field
This type expresses an element of a finite prime field whose characteristic is an arbitrary prime. An object of this type is obtained by applying `simp_ff` to an integer.

element of a finite field of characteristic 2
This type expresses an element of a finite field of characteristic 2. Let `F` be a finite field of characteristic 2. If `[F:GF(2)]` is equal to `n`, then `F` is expressed as `F=GF(2)[t]/(f(t))`, where `f(t)` is an irreducible polynomial over `GF(2)` of degree `n`. As an element `g` of `GF(2)[t]` can be expressed by a bit string. An element `g mod f` in `F` can be expressed by two bit strings representing `g` and `f` respectively.

Several methods to input an element of `F` are provided.

- `@`
 `@` represents `t mod f` in `F=GF(2)[t]/(f(t))`. By using `@` one can input an element of `F`. For example `@^10+@+1` represents an element of `F`.
- `ptogf2n`
 `ptogf2n` converts a univariate polynomial into an element of `F`.
- `ntogf2n`
 As a bit string, a non-negative integer can be regarded as an element of `F`. Note that one can input a non-negative integer in decimal, hexadecimal (`0x` prefix) and binary (`0b` prefix) formats.
• micellaneous
 \texttt{simp_ff} is available if one wants to convert the whole coefficients of a polynomial.

The characteristic of a large finite prime field and the defining polynomial of a finite field of characteristic 2 are set by \texttt{setmod_ff}. Elements of finite fields do not have informations about the modulus. Upon an arithmetic operation, the modulus set by \texttt{setmod_ff} is used. If one of the operands is a rational number, it is automatically converted into an element of the finite field currently set and the operation is done in the finite field.

3.3 Types of indeterminates

An algebraic object is recognized as an indeterminate when it can be a (so-called) variable in polynomials. An ordinary indeterminate is usually denoted by a string that start with a small alphabetical letter followed by an arbitrary number of alphabetical letters, digits or \.'_'. In addition to such ordinary indeterminates, there are other kinds of indeterminates in a wider sense in \texttt{Asir}. Such indeterminates in the wider sense have type \texttt{polynomial}, and further are classified into sub-types of the type \texttt{indeterminate}.

0 ordinary indeterminate

An object of this sub-type is denoted by a string that start with a small alphabetical letter followed by an arbitrary number of alphabetical letters, digits or \.'_'. This kind of indeterminates are most commonly used for variables of polynomials.

\begin{verbatim}
[0] [vtype(a),vtype(aA_12)];
[0,0]
\end{verbatim}

1 undetermined coefficient

The function \texttt{uc()} creates an indeterminate which is denoted by a string that begins with \.'_'. Such an indeterminate cannot be directly input by its name. Other properties are the same as those of \texttt{ordinary indeterminate}. Therefore, it has a property that it cannot cause collision with the name of ordinary indeterminates input by the user. And this property is conveniently used to create undetermined coefficients dynamically by programs.

\begin{verbatim}
[1] u=uc();
 0
[2] vtype(u);
 1
\end{verbatim}

2 function form

A function call to a built-in function or to an user defined function is usually evaluated by \texttt{Asir} and retained in a proper internal form. Some expressions, however, will remain in the same form after evaluation. For example, \(\sin(x)\) and \(\cos(x+1)\) will remain as if they were not evaluated. These (unevaluated) forms are called `function forms' and are treated as if they are indeterminates in a wider sense. Also, special forms such as \(\Phi\pi\) the ratio of circumference and diameter, and \(\Phi\) Napier's number, will be treated as `function forms'.

\begin{verbatim}
[3] v=sin(x);
 sin(x)
\end{verbatim}
[4] vtype(V);
2
[5] vars(V^2+V+1);
[sin(x)]

functor
A function call (or a function form) has a form $\text{fname}($args$)$. Here, fname alone is called a functor. There are several kinds of functors: built-in functor, user defined functor and functor for the elementary functions. A functor alone is treated as an indeterminate in a wider sense.

[6] vtype(sin);
3
4 User language Asir

Asir provides many built-in functions, which perform algebraic computations, e.g., factorization and GCD computation, file I/O, extract a part of an algebraic expression, etc. In practice, you will often encounter a specific problem for which Asir does not provide a direct solution. For such cases, you have to write a program in a certain user language. The user language for Asir is also called Asir. In the following, we describe the Syntax and then show how to write a user program by several examples.

4.1 Syntax — Difference from C language

The syntax of Asir is based on C language. Main differences are as follows. In this section, a variable does not mean an indeterminate, but a program variable which is written by a string which begins with a capital alphabetical letter in Asir.

- No types for variables.
 As is already mentioned, any object in Asir has their respective types. A program variable, however, is type-less, that is, any typed object can be assigned to it.

 [0] A = 1;
 1
 [1] type(A);
 1
 [2] A = [1, 2, 3];
 [1, 2, 3]
 [3] type(A);
 4

- Variables, together with formal parameters, in a function (procedure) are all local to
 the function by default. Variables can be global at the top level, if they are declared with the key word extern. Thus, the scope rule of Asir is very simple. There are only two types of variables: global variables and local variables. A name that is input to the Asir's prompt at the top level is denotes a global variable commonly accessed at the top level. In a function (procedure) the following rules are applied.

 1. If a variable is declared as global by an extern statement in a function, the variable
 used in that function denotes a global variable at the top level. Furthermore, if a
 variable in a function is preceded by an extern declaration outside the function
 but in a file where the function is defined, all the appearance of that variable in
 the same file denote commonly a global variable at the top level.

 2. A variable in a function is local to that function, if it is not declared as global by
 an extern declaration.

 % cat afo
 def afo() { return A;}
 extern A$
 def bfo() { return A;}
 end$
 % asir
 [0] load("afo")$
1
[6] afo();
0
[7] bfo();
1

- Program variables and algebraic indeterminates are distinguished in Asir.
The names of program variables must begin with a capital letter; while the names of
indeterminates and functions must begin with a small letter.
This is an unique point that differs from almost all other existing computer algebra
systems. The distinction between program variables and indeterminates is adopted to
avoid the possible and usual confusion that may arise in a situation where a name is
used as an indeterminate but, as it was, the name has been already assigned some
value. To use different type of letters, capital and small, was a matter of syntactical
convention like Prolog, but it is convenient to distinguish variables and indeterminates
in a program.

- No switch statements, and goto statements.
 Lack of goto statement makes it rather bothering to exit from within multiple loops.
- Comma expressions are allowed only in A, B and C of the constructs for (A; B; C) or
 while(A).
 This limitation came from adopting lists as legal data objects for Asir.

The above are limitations; extensions are listed as follows.

- Arithmetic for rational expressions can be done in the same manner as is done for
 numbers in C language.
- Lists are available for data objects.
 Lists are conveniently used to represent a certain collection of objects. Use of lists
 enables to write programs more easily, shorter and more comprehensible than use of
 structure like C programs.
- Options can be specified in calling user defined functions.
 See Section 4.2.12 [option], page 26.

4.2 Writing user defined functions

4.2.1 User defined functions

To define functions by an user himself, 'def' statement must be used. Syntactical errors are
detected in the parsing phase of Asir, and notified with an indication of where Asir found
the error. If a function with the same name is already defined (regardless to its arity,) the
new definition will override the old one, and the user will be told by a message,

afo() redefined.

on the screen when a flag verbose is set to a non-zero value by ctrl(). Recursive definition,
and of course, recursive use of functions are available. A call for an yet undefined function
in a function definition is not detected as an error. An error will be detected at execution
of the call of that yet undefined function.
Chapter 4: User language Asir

/* X! */
def f(X) {
 if (X)
 return 1;
 else
 return X * f(X-1);
}

/* Cj (0 ≤ i ≤ N, 0 ≤ j ≤ i) */
def c(N)
{
 A = newvect(N+1); A[0] = B = newvect(1); B[0] = 1;
 for (K = 1; K <= N; K++) {
 A[K] = B = newvect(K+1); B[0] = B[K] = 1;
 for (P = A[K-1], J = 1; J < K; J++)
 B[J] = P[J-1]+P[J];
 }
 return A;
}

In the second example, c(N) returns a vector, say A, of length N+1. A[I] is a vector of length I+1, and each element is again a vector which contains Cj as its elements.

In the following, the manner of writing Asir programs is exhibited for those who have no experience in writing C programs.

4.2.2 variables and indeterminates

variables (program variables)

A program variable is a string that begins with a capital alphabetical letter followed by any numbers of alphabetical letters, digits and '_'.

A program variable is thought of a box (a carrier) which can contain Asir objects of various types. The content is called the ‘value’ of that variable. When an expression in a program is to be evaluated, the variable appearing in the expression is first replaced by its value and then the expression is evaluated to some value and stored in the memory. Thus, no program variable appears in objects in the internal form. All the program variables are initialized to the value 0.

 [0] X^2+X+1;
 1
 [1] X=2;
 2
 [2] X^2+X+1;
 7
indeterminates
An indeterminate is a string that begins with a small alphabetical letter followed by any numbers of alphabetical letters, digits and ‘_’.
An indeterminate is a transcendental element, so-called variable, which is used to construct polynomial rings. An indeterminate cannot have any value. No assignment is allowed to it.

[3] \(x=x\);
\(x\)

[4] \(x^2+x+1\);
\(x^2+2x+1\)

4.2.3 parameters and arguments

```asir
def sum(N)
    for ( I = 1, S = 0; I <= N; I++ )
        S += I;
    return S;
}
```

This is an example definition of a function that sums up integers from 1 to \(N\). The \(N\) in \(\text{sum}(N)\) is called the (formal) parameter of \(\text{sum}(N)\). The example shows a function of the single argument. In general, any number of parameters can be specified by separating by commas (‘,’). A (formal) parameter accepts a value given as an argument (or an actual parameter) at a function call of the function. Since the value of the argument is given to the formal parameter, any modification to the parameter does not usually affect the argument (or actual parameter). However, there are a few exceptions: vector arguments and matrix arguments.

Let \(A\) be a program variable and assigned to a vector value \([a, b]\). If \(A\) is given as an actual parameter to a formal parameter, say \(V\), of a function, then an assignment in the function to the vector element designator \(V[1]\), say \(V[1]=c\);, causes modification of the actual parameter \(A\) resulting \(A\) to have an altered value \([a, c]\). Thus, if a vector is given to a formal parameter of a function, then its element (and subsequently the vector itself) in the calling side is modified through modification of the formal parameter by a vector element designator in the called function. The same applies to a matrix argument. Note that, even in such case where a vector (or a matrix) is given to a formal parameter, the assignment to the whole parameter itself has only a local effect within the function.

```asir
def clear_vector(M) {
    /* M is expected to be a vector */
    L = size(M)[0];
    for ( I = 0; I < L; I++ )
        M[I] = 0;
}
```

This function will clear off the vector given as its argument to the formal parameter \(M\) and return a 0 vector.

Passing a vector as an argument to a function enables returning multiple results by packing each result in a vector element. Another alternative to return multiple results is to use a list. Which to use depends on cases.
4.2.4 comments

The text enclosed by ‘/*’ and ‘*/’ (containing ‘/*’ and ‘*/’) is treated as a comment and has no effect to the program execution as in C programs.

```plaintext
/*
 * This is a comment.
 */

def afo(x) {
A comment can span to several lines, but it cannot be nested. Only the first ‘/\*’ is effective no matter how many ‘/\*’s in the subsequent text exist, and the comment terminates at the first ‘*/’.

In order to comment out a program part that may contain comments in it, use the pair, #if 0 and #endif. (See Section 4.2.11 [preprocessor], page 25)

```plaintext
#if 0
 def bfo(x) {
 /* empty */
 }
#endif
```

4.2.5 statements

An user function of Asir is defined in the following form.

```plaintext
 def name(parameter, parameter,...,parameter) {
 statement
 statement
 ...
 statement
 }
```

As you can see, the statement is a fundamental element of the function. Therefore, in order to write a program, you have to learn what the statement is. The simplest statement is the simple statement. One example is an expression with a terminator (‘;’ or ‘$’).

```plaintext
S = sum(N);
```

A ‘return’ statement’ and ‘break statement’ are also primitives to construct ‘statements.’

As you can see the syntactic definition of ‘if statement’ and ‘for statement’, each of their bodies consists of a single ‘statement.’ Usually, you need several statements in such a body. To solve this contradictory requirement, you may use the ‘compound statement.’ A ‘compound statement’ is a sequence of ‘statement’s enclosed by a left brace ‘{’ and a right brace ‘}’. Thus, you can use multiple statement as if it were a single statement.

```plaintext
if (I == 0) {
 J = 1;
 K = 2;
 L = 3;
}
```

No terminator symbol is necessary after ‘}’, because ‘{’ statement sequence ‘}’ already forms a statement, and it satisfies the syntactical requirement of the ‘if statement.’
4.2.6 return statement

There are two forms of return statement.

    return expression;

    return;

Both forms are used for exiting from a function. The former returns the value of the expression as a function value. The function value of the latter is not defined.

4.2.7 if statement

There are two forms of if statement.

    if ( expression ) if ( expression )
    statement and statement
    else
    statement

The interpretation of these forms are obvious. However, be careful when another if statement comes at the place for ‘statement’. Let us examine the following example.

    if ( expression1 )
    if ( expression2 ) statement1
    else
    statement2

One might guess statement2 after else corresponds with the first if ( expression1 ) by its appearance of indentation. But, as a matter of fact, the Asir parser decides that it correspond with the second if ( expression2 ). Ambiguity due to such two kinds of forms of if statement is thus solved by introducing a rule that a statement preceded by an else matches to the nearest preceding if.

Therefore, rearrangement of the above example for improving readability according to the actual interpretation gives the following.

    if ( expression1 ){
        if ( expression2 ) statement1 else statement2
    }

On the other hand, in order to reflect the indentation, it must be written as the following.

    if ( expression1 ){
        if ( expression2 ) statement1
    } else
    statement2

4.2.8 loop, break, return, continue

There are three kinds of statements for loops (repetitions): the while statement, the for statement, and the do statement.

- while statement
  It has the following form.
while ( expression ) statement
This statement specifies that statement is repeatedly evaluated as far as the
expression evaluates to a non-zero value. If the expression 1 is given to the
expression, it forms an infinite loop.

• for statement
  It has the following form.
  
  for ( expression list-1; expression; expression list-2 ) statement
  
  This is equivalent to the program
  
  expression list-1 (transformed into a sequence of simple statement)
  while ( expression ) {
    statement
  }
  expression list-2 (transformed into a sequence of simple statement)
  }

• do statement
  
  do {
    statement
  } while ( expression )
  
  This statement differs from while statement by the location of the termination condition: This statement first execute the statement and then check the condition, whereas while statement does it in the reverse order.

As means for exiting from loops, there are break statement and return statement. The continue statement allows to move the control to a certain point of the loop.

• break
  The break statement is used to exit the inner most loop.

• return
  The return statement is usually used to exit from a function call and it is also effective in a loop.

• continue
  The continue statement is used to move the control to the end point of the loop body.
For example, the last expression list will be evaluated in a for statement, and the termination condition will be evaluated in a while statement.

4.2.9 structure definition

A structure data type is a fixed length array and each component of the array is accessed by its name. Each type of structure is distinguished by its name. A structure data type is declared by struct statement. A structure object is generated by a builtin function newstruct. Each member of a structure is accessed by an operator ->. If a member of a structure is again a structure, then the specification by -> can be nested.

[1] struct rat {num, denom};
0
[2] A = newstruct(rat);
{0, 0}
4.2.10 various expressions

Major elements to construct expressions are the following:

- addition, subtraction, multiplication, division, exponentiation
  The exponentiation is denoted by ‘^’. (This differs from C language.) Division denoted
  by ‘/’ is used to operate in a field, for example, 2/3 results in a rational number 2/3. For
  integer division and polynomial division, both including remainder operation, built-in
  functions are provided.

\[ x+1 \quad A^2 \times B \times a \times f o \times X/3 \]

- programming variables with indices
  An element of a vector, a matrix or a list can be referred to by indexing. Note that the
  indices begin with number 0. When the referred element is again a vector, a matrix or
  a list, repeated indexing is also effective.

\[ V[0] \quad M[1] \quad [2] \]

- comparison operation
  There are comparison operations ‘==’ for equivalence, ‘!=’ for non-equivalence, ‘>’,
  ‘<’, ‘>=’, and ‘<=’ for larger or smaller. The results of these operations are either value
  1 for the truth, or 0 for the false.

- logical expression
  There are two binary logical operations ‘& &’ for logical ‘conjunction’(and), ‘||’ for log-
  ical ‘disjunction’(or), and one unary logical operation ‘!’ for logical ‘negation’(not).
  The results of these operations are either value 1 for the truth, and 0 for the false.

- assignment
  Value assignment of a program variable is usually done by ‘=’. There are special
  assignments combined with arithmetic operations. (‘+=’, ‘-=’, ‘*=’, ‘/=’, ‘%=’)

\[ A = 2 \quad A *= 3 \quad (t h e \ s a m e \ a s \ A = A \times 3; \ T h e \ o t h e r \ c o m b i n a t i o n \ a r e \ a l i k e.) \]

- function call
  A function call is also an expression.

- ‘++’, ‘--’
  These operators are attached to or before a program variable, and denote special op-
  erations and values.

\[
\begin{align*}
A++ & \text{ the expression value is the previous value of } A, \text{ and } A = A + 1 \\
A-- & \text{ the expression value is the previous value of } A, \text{ and } A = A - 1 \\
++A & \text{ } A = A + 1, \text{ and the expression value is the value after increment of } A \\
--A & \text{ } A = A - 1, \text{ and the expression value is the value after decrement of } A
\end{align*}
\]
4.2.11 preprocessor

The Asir user language imitates C language. A typical features of C language include macro expansion and file inclusion by the preprocessor cpp. Also, Asir read in user program files through cpp. This enables Asir user to use #include, #define, #if etc. in his programs.

- #include
  Include files are searched within the same directory as the file containing #include so that no arguments are passed to cpp.

- #define
  This can be used just as in C language.

- #if
  This is conveniently used to comment out a large part of a user program that may contain comments by /* and */, because such comments cannot be nested.

The following are the macro definitions in ‘defs.h’.

```c
#define ZERO 0
#define NUM 1
#define POLY 2
#define RAT 3
#define LIST 4
#define VECT 5
#define MAT 6
#define STR 7
#define N_Q 0
#define N_R 1
#define N_A 2
#define N_B 3
#define N_C 4
#define V_IND 0
#define V_UC 1
#define V_PF 2
#define V_SR 3
#define isnum(a) (type(a)==NUM)
#define ispoly(a) (type(a)==POLY)
#define israt(a) (type(a)==RAT)
#define islist(a) (type(a)==LIST)
#define isvec(a) (type(a)==VECT)
#define ismat(a) (type(a)==MAT)
#define isstr(a) (type(a)==STR)
#define FIRST(L) (car(L))
#define SECOND(L) (car(cdr(L)))
#define THIRD(L) (car(cdr(cdr(L))))
#define FOURTH(L) (car(cdr(cdr(cdr(L)))))
#define DEG(a) deg(a,var(a))
#define LCOEF(a) coef(a,deg(a,var(a)))
#define LTERM(a) coef(a,deg(a,var(a)))*var(a)^deg(a,var(a))
#define TT(a) car(car(a))
#define TS(a) car(cdr(car(a)))
#define MAX(a,b) ((a)>(b)?(a):(b))
```
4.2.12 option

If a user defined function is declared with N arguments, then the function is callable with N arguments only.

\[
[0] \text{def factor}(A) \{ \text{return fctr}(A); \}
[1] \text{factor}(x^5-1,3);
\text{evalf : argument mismatch in factor()}
\text{return to toplevel}
\]

A function with indefinite number of arguments can be realized by using a list or an array as its argument. Another method is available as follows:

\[
% \text{cat factor}
\text{def factor}(F)
\{
 \quad \text{Mod = getopt(mod);}
 \quad \text{ModType = type(Mod);}
 \quad \text{if ( ModType == 1 )} /* 'mod' is not specified */
 \quad \text{return fctr(F);}
 \quad \text{else if ( ModType == 0 )} /* 'mod' is a number */
 \quad \text{return modfctr(F,Mod);}
\}
[0] \text{load("factor")}$
[1] \text{factor}(x^5-1);
[2] [[1,1],[x-1,1],[x^4+x^3+x^2+x+1,1]]
[3] \text{factor}(x^5-1|\text{mod}=11);
[4] [[1,1],[x+6,1],[x+2,1],[x+10,1],[x+7,1],[x+8,1]]
\]

In the second call of \text{factor()}, \text{mod}=11 is placed after the argument \(x^5-1\), which appears in the declaration of \text{factor()}. This means that the value 11 is assigned to the keyword \text{mod} when the function is executed. The value can be retrieved by \text{getopt(mod)}. We call such machinery \text{option}. If the option for \text{mod} is not specified, \text{getopt(mod)} returns an object whose type is -1. By this feature, one can describe the behaviour of the function when the option is not specified by \text{if} statements. After ‘\|’ one can append any number of options seperated by ‘,’.

\[
[100] \text{xxx}(1,2,x^2-1,[1,2,3]|\text{proc}=1,\text{index}=5);
\]
5 Debugger

5.1 What is Debugger

A debugger **dbx** is available for C programs on Sun, VAX etc. In **dbx**, one can use commands such as setting break-point on a source line, stepwise execution, inspecting a variable's value etc. **Asir** provides such a **dbx**-like debugger. In addition to such commands, we adopted several useful commands from **gdb**. In order to enter the debug-mode, type **debug**; at the top level of **Asir**.

```
[10] debug;
(debug)
```

**Asir** also enters the debug-mode by the following means or in the following situations.

- When it reaches a break point while executing a program.
- When the ‘d’ option is selected at an interruption.
- When it detects errors while executing a program.

In this case, to continue the execution of the program is impossible. But because it reports the statement in the user defined function that caused the error, then enters the debug-mode, user can inspect the values of variables at the error state. This helps to analyze the error and debug the program.

- When built-in function **error()** is called.

5.2 Debugger commands

Only indispensable commands of **dbx** are supported in the current version. Generally, the effect of a command is the same as that of **dbx**. There are, however, slight differences: Commands **step** and **next** execute the next statement, but not the next line; therefore, if there are multiple statements in one line, one should issue such commands several times to proceed the next line. The debugger reads in `.dbxinit`, which allows the same aliases as is used in **dbx**.

- **step** Executes the next statement; if the next statement contains a function call, then enters the function.
- **next** Executes the next statement.
- **finish** Enter the debug-mode again after finishing the execution of the current function. This is useful when an unnecessary **step** has been executed.
- **cont**
- **quit** Exits from the debug-mode and continues execution.
- **up [n]** Move up the call stack one level. Move up the call stack n levels if n is specified.
- **down [n]** Move down the call stack one level. Move down the call stack n levels if n is specified.
- **frame [n]** Print the current stack frame with no argument. n specifies the stack frame number to be selected. Here the stack frame number is a number at the top of lines displayed by executing **where**.
list [startline]
list function
   Displays ten lines in a source file from startline, the current line if the startline
   is not specified, or from the top line of current target function.

print expr
   Displays expr.
func function
   Set the target function to function.
stop at sourceline [if cond]
stop in function
   Set a break-point at the sourceline-th line of the source file, or at the top of the
   target function. Break-points are removed whenever the relevant function is
   redefined. When if statements are repeatedly encountered, Asir enters debug-
   mode only when the corresponding cond parts are evaluated to a non-zero value.

trace expr at sourceline [if cond]
trace expr in function
   These are similar to stop. trace simply displays the value of expr and without
   entering the debug-mode.
delete n
   Remove the break point specified by a number n, which can be known by the
   status command.
status
   Displays a list of the break-points.
where
   Displays the calling sequence of functions from the top level through the current
   level.
alias alias command
   Create an alias alias for command

The debugger command print can take almost all expressions as its argument. The ordinary
usage is to print the values of (programming) variables. However, the following usage is
worth to remember.

- **overwriting the variable**
  One might sometimes wish to continue the execution with several values of variables
  modified. For such an purpose, take the following procedure.
  
  (debug) print A
  A = 2
  (debug) print A=1
  A = 1
  (debug) print A
  A = 1

- **function call**
  A function call is also an expression, therefore, it can appear at the argument place of
  print.
  
  (debug) print length(List)
  length(List) = 14
In this example, the length of the list assigned to the variable List is examined by a function length().

```
(debug) print ctrl("cputime",1)
ctrl("cputime",1) = 1
```

This example shows such a usage where measuring CPU time is activated from within the debug-mode, even if one might have forgotten to specify the activation of CPU time measurement.

It is also useful to save intermediate results to files from within the debug-mode by the built-in function bsave() when one is forced to quit the computation by any reason.

```
(debug) print bsave(A,"savefile")
bsave(A,"savefile") = 1
```

Note that continuation of the parent function will be impossible if an error will occur in the function call from within the debug-mode.

### 5.3 Execution example of debugger

Here, the usage of the Debugger is explained by showing an example for debugging a program which computes the integer factorial by a recursive definition.

```
% asir
[0] load("fac")$
[3] debug$
 (debug) list factorial
 1 def factorial(x) {
 2 if (!x)
 3 return 1;
 4 else
 5 return x * factorial(x - 1);
 6 }
 7 end$
(debug) stop at 5 <--- setting a break point
(0) stop at "./fac":5
(debug) quit <--- leaving the debug-mode
[4] factorial(6); <--- call for factorial(6)
stopped in factorial at line 5 in file "./fac"
 5 return x * factorial(x - 1);
(debug) where factorial(), line 5 in "./fac"<--- display the calling sequence up to this break point
(debug) print x
x = 6 <--- Display the value of x
X = 6
(debug) step <--- step execution (enters function)
stopped in factorial at line 2 in file "./fac"
 2 if (!x)
(debug) where factorial(), line 2 in "./fac"
factorial(), line 5 in "./fac"
(debug) print x
x = 5
```
(debug) delete 0  
<-- delete the break point 0
(ddebug) cont
<-- continue execution
720
<-- result = 6!
[5] quit;

5.4 Sample file of initialization file for Debugger

As is previously mentioned, Asir reads in the file `~/.dbxinit` at its invocation. This file is originally used to define various initializing commands for dbx debugger, but Asir recognizes only alias lines. For example, by the setting

%
% cat ~/.dbxinit
alias n next
alias c cont
alias p print
alias s step
alias d delete
alias r run
alias l list
alias q quit
%

one can use short aliases, e.g., p, c etc., for frequently used commands such as print, cont etc. One can create new aliases in the debug-mode during an execution.

lex_hensel(La,[a,b,c],0,[a,b,c],0);
stopped in gennf at line 226 in file "/home/usr3/noro/asir/gr"
226 N = length(V); Len = length(G); dp_ord(0); PS = newvec(Len);
(debug) p V
V = [a,b,c]
(debug) c
...

6 Built-in Function

6.1 Numbers

6.1.1 idiv, irem

idiv(i1,i2)
:: Integer quotient of i1 divided by i2.
irem(i1,i2)
:: Integer remainder of i1 divided by i2.
return integer
i1,i2 integer
• Integer quotient and remainder of i1 divided by i2.
• i2 must not be 0.
• If the dividend is negative, the results are obtained by changing the sign of the results for absolute values of the dividend.
• One can use i1 % i2 for replacement of irem() which only differs in the point that the result is always normalized to non-negative values.
• Use sdiv(), srem() for polynomial quotient.
[0] idiv(100,7);
  14
[0] idiv(-100,7);
  -14
[1] irem(100,7);
  2
[1] irem(-100,7);
  -2

References
Section 6.3.8 [sdiv sdivm srem sremm sqr sqrm], page 45, Section 6.3.10 [%], page 47.

6.1.2 fac

fac(i) :: The factorial of i.
return integer
i integer
• The factorial of i.
• Returns 0 if the argument i is negative.
[0] fac(50);
30414093201713378043612608166064768844377641568960512000000000000
6.1.3 \texttt{igcd,igcdcnt1}

\texttt{igcd}(i1,i2)

\begin{itemize}
\item The integer greatest common divisor of \textit{i1} and \textit{i2}.
\end{itemize}

\texttt{igcdcnt1}([\textit{i}])

\begin{itemize}
\item Selects an algorithm for integer GCD.
\end{itemize}

\textit{return} integer

\textit{i1,i2,i} integer

- Function \texttt{igcd()} returns the integer greatest common divisor of the given two integers.
- An error will result if the argument is not an integer; the result is not valid even if one is returned.
- Use \texttt{gcd()}, \texttt{gcdz()} for polynomial GCD.
- Various method of integer GCD computation are implemented and they can be selected by \texttt{igcdcnt1}.

\begin{itemize}
\item 0 Euclid algorithm (default)
\item 1 binary GCD
\item 2 bmod GCD
\item 3 accelerated integer GCD
\end{itemize}

2, 3 are due to [Weber].

In most cases 3 is the fastest, but there are exceptions.

\begin{verbatim}
[0] A=1random(10^-4)$
[1] B=1random(10^-4)$
[2] C=1random(10^-4)$
[5] runtime(1)$
[6] igcd(D,E)$
0.6sec + gc : 1.93sec(2.531sec)
[7] igcdcnt1(1)$
[8] igcd(D,E)$
0.27sec(0.2635sec)
[9] igcdcnt1(2)$
[10] igcd(D,E)$
0.19sec(0.1928sec)
[12] igcd(D,E)$
0.08sec(0.08023sec)
\end{verbatim}

References

Section 6.3.19 [gcd gcdz], page 52.
6.1.4 ilcm

ilcm(i1,i2)
:: The integer least common multiple of i1 and i2.

return integer

i1,i2 integer

- This function computes the integer least common multiple of i1, i2.
- If one of argument is equal to 0, the return 0.

References
Section 6.1.3 [igcd igcdcntl], page 32, Section 6.1.9 [mt_save mt_load], page 35.

6.1.5 inv

inv(i,m) :: the inverse (reciprocal) of i modulo m.

return integer

i,m integer

- This function computes an integer such that ia ≡ 1 mod (m).
- The integer i and m must be mutually prime. However, inv() does not check it.

[71] igcd(1234,4321);
1
[72] inv(1234,4321);
3239
[73] irem(3239*1234,4321);
1

References
Section 6.1.3 [igcd igcdcntl], page 32.

6.1.6 prime, lprime

prime(index)
lprime(index)
:: Returns a prime number.

return integer

index integer

- The two functions, prime() and lprime(), returns an element stored in the system
table of prime numbers. Here, index is a non-negative integer and be used as an index
for the prime tables. The function prime() can return one of 1900 primes up to 16381
indexed so that the smaller one has smaller index. The function lprime() can return
one of 999 primes which are 8 digit sized and indexed so that the larger one has the
smaller index. The two function always returns 0 for other indices.
• For more general function for prime generation, there is a PARI function
  \texttt{pari(nextprime, number)}.
  
  [95] \texttt{prime(0)};  
  2  
  [96] \texttt{prime(1228)};  
  9973  
  [97] \texttt{lprime(0)};  
  99999989  
  [98] \texttt{lprime(999)};  
  0

References
  Section 6.1.13 \texttt{[pari]}, page 37.

6.1.7 \texttt{random}

\texttt{random([seed])}

\texttt{seed}

\texttt{return}  

non-negative integer

• Generates a random number which is a non-negative integer less than $2^{32}$.
• If a non zero argument is specified, then after setting it as a random seed, a random number is generated.
• As the default seed is fixed, the sequence of the random numbers is always the same if a seed is not set.
• The algorithm is Mersenne Twister (http://www.math.keio.ac.jp/matsumoto/mt.html) by M. Matsumoto and T. Nishimura. The implementation is done also by themselves.
• The period of the random number sequence is $2^{19937}-1$.
• One can save the state of the random number generator with \texttt{mt\_save}. By loading the state file with \texttt{mt\_load}, one can trace a single random number sequence across multiple sessions.

References
  Section 6.1.8 \texttt{[lrandom]}, page 34, Section 6.1.9 \texttt{[mt\_save mt\_load]}, page 35.

6.1.8 \texttt{lrandom}

\texttt{lrandom(bit)}

:: Generates a long random number.

\texttt{bit}

\texttt{return}  

integer

• Generates a non-negative integer of at most \texttt{bit} bits.
• The result is a concatenation of outputs of \texttt{random}.

References
  Section 6.1.7 \texttt{[random]}, page 34, Section 6.1.9 \texttt{[mt\_save mt\_load]}, page 35.
6.1.9 mt_save, mt_load

**mt_save(fname)**

:: Saves the state of the random number generator.

**mt_load(fname)**

:: Loads a saved state of the random number generator.

return 0 or 1

defname string

• One can save the state of the random number generator with `mt_save`. By loading the state file with `mt_load`, one can trace a single random number sequence across multiple `Asir` sessions.

```
[340] random();
3510405877
[341] mt_save("/tmp/mt_state");
1
[342] random();
4290933890
[343] quit;
% asir
This is Asir, Version 991108.
Copyright (C) FUJITSU LABORATORIES LIMITED.
3 March 1994. All rights reserved.
[340] mt_load("/tmp/mt_state");
1
[341] random();
4290933890
```

References

Section 6.1.7 [random], page 34, Section 6.1.8 [1random], page 34.

6.1.10 nm, dn

**nm(rat)** :: Numerator of `rat`.

**dn(rat)** :: Denominator of `rat`.

return integer or polynomial

rat rational number or rational expression

• Numerator and denominator of a given rational expression.

• For a rational number, they return its numerator and denominator, respectively. For a rational expression whose numerator and denominator may contain rational numbers, they do not separate those rational coefficients to numerators and denominators.

• For a rational number, the denominator is always kept positive, and the sign is contained in the numerator.

• **Risa/Asir** does not cancel the common divisors unless otherwise explicitly specified by the user. Therefore, `nm()` and `dn()` return the numerator and the denominator as it is, respectively.
[2] \[\text{nm}(\text{-}43/8), \text{dn}(\text{-}43/8)\];
\[-43,8\]
[3] \(\text{dn}((x*z)/(x*y))\);
y*
[3] \(\text{dn}(\text{red}((x*z)/(x*y)))\);
y
References
Section 6.3.20 \[	ext{red}\], page 53.

6.1.11 \text{conj}, \text{real}, \text{imag}

\begin{align*}
\text{real}(\text{comp}) & \quad \text{:: Real part of } \text{comp}. \\
\text{imag}(\text{comp}) & \quad \text{:: Imaginary part of } \text{comp}. \\
\text{conj}(\text{comp}) & \quad \text{:: Complex conjugate of } \text{comp}.
\end{align*}

\begin{itemize}
  \item Basic operations for complex numbers.
  \item These functions works also for polynomials with complex coefficients.
\end{itemize}
\begin{align*}
[111] & \quad A=(2+@i)^3; \\
& \quad (2+11*@i) \\
[112] & \quad [\text{real}(A), \text{imag}(A), \text{conj}(A)]; \\
& \quad [2,11, (2-11*@i)]
\end{align*}

6.1.12 \text{eval}, \text{deval}

\begin{itemize}
  \item Evaluates the value of the functions contained in \text{obj} as far as possible.
  \item \text{deval} returns double float. Rational numbers remain unchanged in results from \text{eval}.
  \item In \text{eval} the computation is done by \textbf{PARI} (See Section 6.1.13 \[	ext{pari}\], page 37). In \text{deval} the computation is done by the C math library.
  \item \text{deval} cannot handle complex numbers.
  \item When \text{prec} is specified, computation will be performed with a precision of about \text{prec}-digits. If \text{prec} is not specified, computation is performed with the precision set currently. (See Section 6.1.14 \[	ext{setprec}\], page 38)
\end{itemize}
• Currently available numerical functions are listed below. Note they are only a small part of whole PARI functions.
  
  \[
  \begin{align*}
  \sin, \cos, \tan, \\
  \text{asin}, \text{acos}, \text{atan}, \\
  \sinh, \cosh, \tanh, \text{asinh}, \text{acosh}, \text{atanh}, \\
  \exp, \log, \text{pow}(a, b) (a^b)
  \end{align*}
  \]

• Symbols for special values are as the followings. Note that @i cannot be handled by \texttt{deval}.

  \@i \quad \text{unit of imaginary number}

  \@pi \quad \text{the number pi, the ratio of circumference to diameter}

  \@e \quad \text{Napier's number (exp(1))}

\begin{verbatim}
[118] \text{eval}(\exp(@pi*@i));
-1.0000000000000000000000000000000
[119] \text{eval}(2^-(1/2));
1.4142135623730950487463678076000
[120] \text{eval} (\sin(@pi/3));
0.86602540378443864776628056339
[121] \text{eval} (\sin(@pi/3)^3 - 3^-(1/2)/2, 50);
-2.7879108448179148471 E-58
[122] \text{eval}(1/2);
1/2
[123] \text{deval} (\sin(1)^2 + \cos(1)^2);
1
\end{verbatim}

References
Section 6.12.1 [ctrl], page 79, Section 6.1.14 [setprec], page 88, Section 6.1.13 [pari], page 37.

6.1.13 pari


\begin{verbatim}
pari(func,arg,prec)
  :: Call PARI function func.
return Depends on func.
func Function name of PARI.
arg Arguments of func.
pre Integer

\end{verbatim}

• This command connects \texttt{Asir} to PARI system so that several functions of PARI can be conveniently used from \texttt{Risa/Asir}.

• PARI [Batut et al.] is developed at Bordeaux University, and distributed as a free software. Though it has a certain facility to computer algebra, its major target is the operation of numbers (\texttt{bignum, bigfloat}) related to the number theory. It facilitates various function evaluations as well as arithmetic operations at a remarkable speed. It can also be used from other external programs as a library. It provides a language
interface named 'gp' to its library, which enables a user to use PARI as a calculator which runs on UNIX. The current version is 2.0.17beta. It can be obtained by several ftp sites. (For example, ftp://megrez.ceremab.u-bordeaux.fr/pub/pari.)

- The last argument (optional) int specifies the precision in digits for bigfloat operation. If the precision is not explicitly specified, operation will be performed with the precision set by setprec()

- Currently available functions of PARI system are as follows. Note these are only a part of functions in PARI system. For details of individual functions, refer to the PARI manual. (Some of them can be seen in the following example.)

abs, adj, arg, bigomega, binary, ceil, centerlift, cf, classno, classno2, conj, content, denom, det, det2, detr, dilog, disc, discf, divisors, eigen, eint1, erf, eta, floor, frac, galois, galoisconj, gam, gamma, hclassno, hermite, hess, imag, image, image2, indexrank, indsort, initalg, isfund, isprime, ispsp, issqrt, issqfree, issquare, jacobi, jell, ker, keri, kerint, kerint1, kerint2, kerr, length, lextra, lift, lindep, lll, lllg1, lllgen, lllgram, lllgraml1, lllgramgen, lllgramint, lllgramkerim, lllgramkerimgen, lllint, lllkerim, lllkerimgen, lllrat, lngamma, logagm, mat, matinver, matrixqz2, matrixqz3, matsize, modreverse, mu, nextprime, norm, norm2, numdiv, numer, omega, order, ordred, phi, pnqn, polred, polred2, primroot, psi, quadgen, quadpoly, real, recip, redcomp, redreal, regula, reorder, reverse, rhoreal, roots, rootslong, round, sigma, signat, simplify, smalldiscf, smallfact, smallpolred, smallpolred2, smith, smith2, sort, sqr, sqred, sqrt, supplement, trace, trans, trunc, type, unit, vec, wf, wf2, zeta

- Asir currently uses only a very small subset of PARI. We will improve Asir so that it can provide more functions of PARI.

/* Eigen vectors of a numerical matrix */
[0] pari(eigen, newmat(2, 2, [[1, 1], [1, 2]]));
[ -1.61803398874989484819771921990 0.61803398874989484826 ]
[ 1 1 ]

/* Roots of a polynomial */
[1] pari(roots, t^2-2);
[ -1.41421356237309504876 1.41421356237309504876 ]

References
Section 6.1.14 [setprec], page 38.

6.1.14 setprec

setprec([n])
:: Sets the precision for bigfloat operations to n digits.

return integer

n integer

- When an argument is given, it sets the precision for bigfloat operations to n digits. The return value is always the previous precision in digits regardless of the existence of an argument.
• **Bigfloat** operations are done by PARI. (See Section 6.1.13 [pari], page 37)
• This is effective for computations in bigfloat. Refer to `ctrl()` for turning on the `bigfloat` flag.
• There is no upper limit for precision digits. It sets the precision to some digits around the specified precision. Therefore, it is safe to specify a larger value.

```
[1] setprec(); 9
[2] setprec(100); 9
[3] setprec(100); 96
```

Section 6.12.1 [ctrl], page 79, Section 6.1.12 [eval deval], page 36, Section 6.1.13 [pari], page 37.

### 6.1.15 setmod

```
setmod([p])
:: Sets the ground field to GF(p).
```

**return** integer

**n** prime less than $2^{27}$

• Sets the ground field to GF(p) and returns the value p.

• A member of a finite field does not have any information about the field and the arithmetic operations over GF(p) are applied with p set at the time.

• As for large finite fields, see Chapter 10 [Finite fields], page 148.

```
[0] A=dp_mod(dp_ptsod(2*x,[x]),3,[1]);
(2)<<1>
[1] A+A;
addmi : invalid modulus
return to toplevel
[1] setmod(3);
3
[2] A+A;
(1)<<1>
```

References

Section 8.8.12 [dp_mod dp_rat], page 123, Section 3.2 [Types of numbers], page 13.

### 6.1.16 ntoint32, int32ton

```
ntoint32(n)
int32ton(int32)
:: Type-conversion between a non-negative integer and an unsigned 32bit integer.
```

**return** unsigned 32bit integer or non-negative integer
$n$ non-negative integer less than $2^{32}$

$\text{int32}$ unsigned 32bit integer

- These functions do conversions between non-negative integers (the type id 1) and unsigned 32bit integers (the type id 10).
- An unsigned 32bit integer is a fundamental construct of OpenXM and one often has to send an integer to a server as an unsigned 32bit integer. These functions are used in such a case.

References

Chapter 7 [Distributed computation], page 89, Section 3.2 [Types of numbers], page 13.

6.2 Bit operations

6.2.1 iand, ior, ixor

\text{iand} (i1, i2)
  :: bitwise and

\text{ior} (i1, i2)
  :: bitwise or

\text{ixor} (i1, i2)
  :: bitwise xor

\text{return} integer

\text{i1}, \text{i2} integer

- The absolute value of the argument is regarded as a bit string.
- The sign of the argument is ignored and a non-negative integer is returned.

\begin{verbatim}
[0] ctrl("hex",1);
0x1
[1] iand(0xeeeeeeeeeeeeee,0x2984723234812312);
0x462224802202202
[2] ior(0xa0a0a0a0a0a0a0,0xb0c0b0b0b0b0b);
0xabacabababababab
[3] ixor(0xffffffff,0x234234234234);
0x2cdbcdbcdcb
\end{verbatim}

References

Section 6.2.2 [ishift], page 41.

6.2.2 ishift

\text{ishift} (i, \text{count})
  :: bit shift

\text{return} integer
\(i, \text{count} \quad \text{integer}\)
- The absolute value of \(i\) is regarded as a bit string.
- The sign of \(i\) is ignored and a non-negative integer is returned.
- If \(\text{count}\) is positive, then \(i\) is shifted to the right. If \(\text{count}\) is negative, then \(i\) is shifted to the left.

\[
\begin{align*}
[0] & \text{ctrl}("\text{hex}"), 1; \\
& 0x1 \\
[1] & \text{ishift}(0x1000000, 12); \\
& 0x1000 \\
[2] & \text{ishift}(0x1000, -12); \\
& 0x1000000 \\
[3] & \text{ixor}(0x1248, \text{ishift}(1, -16) - 1);
\end{align*}
\]

References
Section 6.2.1 [\texttt{iand ior ixor}], page 40.

6.3 operations with polynomials and rational expressions

6.3.1 var

\texttt{var(rat)} :: \text{Main variable (indeterminate) of rat.}

\texttt{return} \quad \text{indeterminate}

\texttt{rat} \quad \text{rational expression}

- See Section 3.1 [Types in Asir], page 10 for main variable.
- Indeterminates (variables) are ordered by default as follows.
  \(x, y, z, u, v, w, p, q, r, s, t, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o\). The other variables will be ordered after the above noted variables so that the first comor will be ordered prior to the followers.

\[
\begin{align*}
[0] & \text{var}(x^2 + y^2 + a^2); \\
& x \\
[1] & \text{var}(a*b*c*d*e); \\
& a \\
[2] & \text{var}(3/abc + 2*xy/efg); \\
& abc
\end{align*}
\]

References
Section 6.3.7 [\texttt{ord}], page 44, Section 6.3.2 [\texttt{vars}], page 42.

6.3.2 vars

\texttt{vars(obj)} :: \text{A list of variables (indeterminates) in an expression obj.}

\texttt{return} \quad \text{list}

\texttt{obj} \quad \text{arbitrary}

- Returns a list of variables (indeterminates) contained in a given expression.
• Lists variables according to the variable ordering.
  [0] vars(x^2+y^2+a^2);
  [x,y,a]
  [1] vars(3/abc+2*xy/efg);
  [abc,xy,efg]
  [2] vars([x,y,z]);
  [x,y,z]

References
  Section 6.3.1 [var], page 41, Section 6.3.3 [uc], page 42, Section 6.3.7 [ord],
  page 44.

6.3.3 uc

uc()  :: Create a new indeterminate for an undermined coefficient.

return  indeterminate with its vtype 1.

• At every evaluation of command uc(), a new indeterminate in the sequence of inde-
terminates _, -1, -2, ... is created successively.
• Indeterminates created by uc() cannot be input on the keyboard. By this property,
you are free, no matter how many indeterminates you will create dynamically by a
program, from collision of created names with indeterminates input from the keyboard
or from program files.
• Functions, rtostr() and strtov(), are used to create ordinary indeterminates (inde-
terminates having 0 for their vtype).
• Kernel sub-type of indeterminates created by uc() is 1. (vtype(uc())=1)
  [0] A=uc();
  _0
  [1] B=uc();
  _1
  [2] (uc()+uc())^2;
  _2^2+2*_3*_2+_*3^2
  [3] (A+B)^2;
  _0^2+2*_1*_0+_*1^2

References
  Section 6.8.3 [vtype], page 69, Section 6.10.1 [rtostr], page 70, Section 6.10.2
  [strtov], page 71.

6.3.4 coef

coef(poly, deg [, var])
  :: The coefficient of a polynomial poly at degree deg with respect to the variable
  var (main variable if unspecified).

return  polynomial
poly  polynomial
var  indeterminate
deg non-negative integer
- The coefficient of a polynomial poly at degree deg with respect to the variable var.
- The default value for var is the main variable, i.e., var(poly).
- For multi-variate polynomials, access to coefficients depends on the specified indeterminates. For example, taking coef for the main variable is much faster than for other variables.

% A = (x+y+z)^3;
% x^3+(3*y+3*z)*x^2+(3*y^2+6*z*y+3*z^2)*x+y^3+3*z*y^2+3*z^2*y+z^3
[0] coef(A,1,y);
% 3*x^2+6*z*x+3*z^2
[1] coef(A,0);
% y^3+3*z*y^2+3*z^2*y+z^3

References
Section 6.3.1 [var], page 41, Section 6.3.5 [deg mindeg], page 43.

6.3.5 deg, mindeg

deg(poly, var)
:: The degree of a polynomial poly with respect to variable.

mindeg(poly, var)
:: The least exponent of the terms with non-zero coefficients in a polynomial poly with respect to the variable var. In this manual, this quantity is sometimes referred to the minimum degree of a polynomial for short.

return non-negative integer

poly polynomial

var indeterminate
- The least exponent of the terms with non-zero coefficients in a polynomial poly with respect to the variable var. In this manual, this quantity is sometimes referred to the minimum degree of a polynomial for short.
- Variable var must be specified.

% [0] deg((x+y+z)^10,x);
% 10
% [1] deg((x+y+z)^10,w);
% 0
% [75] mindeg(x^2+3*x*y,x);
% 1

6.3.6 nmono

nmono(rat)
:: Number of monomials in rational expression rat.

return non-negative integer

rat rational expression
• Number of monomials with non-zero number coefficients in the full expanded form of the given polynomial.
• For a rational expression, the sum of the numbers of monomials of the numerator and denominator.
• A function form is regarded as a single indeterminate no matter how complex arguments it has.

[0] nmono((x+y)^10);
  11
[1] nmono((x+y)^10/(x+z)^10);
  22
[2] nmono(sin((x+y)^10));
  1

References
Section 6.8.3 [vtype], page 69.

6.3.7 ord

ord([varlist])

:: It sets the ordering of indeterminates (variables).

return list of indeterminates

varlist list of indeterminates

• When an argument is given, this function rearranges the ordering of variables (indeterminates) so that the indeterminates in the argument varlist precede and the other indeterminates follow in the system's variable ordering. Regardless of the existence of an argument, it always returns the final variable ordering.

• Note that no change will be made to the variable ordering of internal forms of objects which already exists in the system, no matter what reordering you specify. Therefore, the reordering should be limited to the time just after starting Asir, or to the time when one has decided himself to start a totally new computation which has no relation with the previous results. Note that unexpected results may be obtained from operations between objects which are created under different variable ordering.

[0] ord();
[  x, y, z, u, v, w, p, q, r, s, t, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, x, y, z, u, v, w, p,
  q, r, s, t, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, exp(x), (x)^y, log(x)^(y-1), cos(x), sin(x), tan(x), (-x^2+1)^(-1/2), cosh(x), sinh(x),
  tanh(x), (-x^2+1)^(-1/2), (-x^2-1)^(-1/2)]
[1] ord([dx, dy, dz, a, b, c]);
[  dx, dy, dz, a, b, c, x, y, z, u, v, w, p, q, r, s, t, d, e, f, g, h, i, j, k, l, m, n, o, exp(x),
  (x)^y, log(x)^(y-1), cos(x), sin(x), tan(x), (-x^2+1)^(-1/2),
  cosh(x), sinh(x), tanh(x), (-x^2+1)^(-1/2), (-x^2-1)^(-1/2)]

6.3.8 sdiv, sdivm, srem, sremm, sqr, sqrm
sdiv(poly1,poly2[,v])
sdivm(poly1,poly2,mod[,v])
:: Quotient of poly1 divided by poly2 provided that the division can be performed within polynomial arithmetic over the rationals.
srem(poly1,poly2[,v])
sremm(poly1,poly2,mod[,v])
:: Remainder of poly1 divided by poly2 provided that the division can be performed within polynomial arithmetic over the rationals.
sqr(poly1,poly2[,v])
sqrm(poly1,poly2,mod[,v])
:: Quotient and remainder of poly1 divided by poly2 provided that the division can be performed within polynomial arithmetic over the rationals.

return  sdiv(), sdivm(), srem(), sremm(): polynomial sqr(), sqrm(): a list [quotient,remainder]

poly1  poly2  polynomial
v      indeterminate
mod    prime

• Regarding poly1 as an uni-variate polynomial in the main variable of poly2, i.e.
  var(poly2) (v if specified), sdiv() and srem() compute the polynomial quotient and
  remainder of poly1 divided by poly2.
• sdivm(), sremm(), sqrm() execute the same operation over GF(mod).
• Division operation of polynomials is performed by the following steps: (1) obtain the
  quotient of leading coefficients; let it be Q; (2) remove the leading term of poly1 by
  subtracting, from poly1, the product of Q with some powers of main variable and poly2;
  obtain a new poly1; (3) repeat the above step until the degree of poly1 become smaller
  than that of poly2. For fulfillment, by operating in polynomials, of this procedure,
  the divisions at step (1) in every repetition must be an exact division of polynomials.
  This is the true meaning of what we say “division can be performed within polynomial
  arithmetic over the rationals.”
• There are typical cases where the division is possible: leading coefficient of poly2 is a
  rational number; poly2 is a factor of poly1.
• Use sqr() to get both the quotient and remainder at once.
• Use idiv(), irem() for integer quotient.
• For remainder operation on all integer coefficients, use %.

[0] sdiv((x+y+z)^3,x^2+y+a);
  x+3*y+3*z
[1] srem((x+y+z)^2,x^2+y+a);
  (2*y+2*z)*x+y^2+(2*z-1)*y+z^-2-a
[2] X=(x+y+z)*(x-y-z)^2;
  x^3+(-y-z)*x^2+(-y^2-2*z*y-z^2)*x+y^3+3*z*y^2+3*z^2*y+z^3
[3] Y=(x+y+z)^2*(x-y-z);
\[ x^3 + (y+z)x^2 + (-y^2 - 2yz - z^2)x - y^3 - 3yz^2 x^2 - 3yz^2 - 3y^2 - 3z^2 \]

\[ G = \gcd(x, Y); \]
\[ x^2 - y^2 - 2yz - z^2 \]

\[ x - y - z, 0 \]

\[ \text{sqr}(x, G); \]
\[ x + y + z, 0 \]

\[ \text{sd} \text{div}(y * x^3 + x + 1, y * x + 1); \]

\text{divsp: cannot happen return to toplevel}

References

Section 6.1.1 [idiv irem], page 31, Section 6.3.10 [%], page 47.

6.3.9 tdiv

tdiv(poly1, poly2)
:: Tests whether poly2 divides poly1.

\text{return Quotient if poly2 divides poly1, 0 otherwise.}

\text{poly1 poly2}

\text{polynomial}

- Tests whether poly2 divides poly1 in polynomial ring.
- One application of this function: Consider the case where a polynomial is certainly an irreducible factor of the other polynomial, but the multiplicity of the factor is unknown.

Application of tdiv() to the polynomials repeatedly yields the multiplicity.

\[ Y = (x + y + z)^5 * (x - y - z)^3; \]
\[ x^8 + (2y + 2z) * x^7 + (-2y^2 - 4yz - 2z^2) * x^6 + (-6y^3 - 18z^2 + 2 - 18y^2 - 2yz - 6z^3) * x^5 \]
\[ + (6y^5 + 30yz + 60z^2 + 2y^3 + 3y^2 + 2yz + 5 + 12y^4 + 3y^2 + 12z^2 + 5y + 2z^6) * x^2 + (-2y^7 - 14yz - 6 \]
\[ + 42z^2 + 2y^5 - 70z^3 + 3y^4 - 70x^2 + 3 - 42z^5 + 5y^2 - 2 - 14z^6 - 6y^2 - 2yz - 7) * x - y^8 - 8z^2 + 7 \]
\[ - 28z^2 * 2y^6 - 56z^3 + 3y^5 - 70z^4 + 4y^4 - 56z^5 + 3y^3 - 32z^6 - 8y^2 - 2 - 8z^7 - 8y - 8 \]

[12] for (I=0, F=x+y+z, T=Y; T=tdiv(T, F); I++); 5

References

Section 6.3.8 [sdiv sdivm srem sremm sqaq sqaq], page 45.

6.3.10 %

poly % m :: integer remainder to all integer coefficients of the polynomial.

\text{return integer or polynomial}

\text{poly integer or polynomial with integer coefficients}
\text{m integer}

- Returns a polynomial whose coefficients are remainders of the coefficients of the input polynomial divided by m.
- The resulting coefficients are all normalized to non-negative integers.
- An integer is allowed for poly. This can be used for an alternative for irem() except that the result is normalized to a non-negative integer.
- Coefficients of poly and m must all be integers, though the type checking is not done.

1. \((x+2)^5 \mod 3; x^5+x^4+x^3+2x^2+2x+2\)
2. \((x-2)^5 \mod 3; x^5+2x^4+x^3+2x^2+2x+1\)
3. \((-5) \mod 4; 3\)
4. \(\text{irem}(-5,4); -1\)

References
Section 6.1.1 [idiv irem], page 31.

6.3.11 subst, psubst

\texttt{subst(rat[,\varn,\ratn]*)}
\texttt{psubst(rat[,\var,\rat]*)}
:: Substitute \ratn for \varn in expression \rat. \((n=1,2,\ldots)\) Substitution will be done successively from left to right if arguments are repeated.

\texttt{return rational expression}
\texttt{rat,\ratn rational expression}
\texttt{\varn indeterminate}

- Substitutes rational expressions for specified kernels in a rational expression.
- \texttt{subst(rat,\var1,\rat1,\var2,\rat2,\ldots)} has the same effect as \texttt{subst(subst(rat,\var1,\rat1),\var2,\rat2,\ldots)}.
- Note that repeated substitution is done from left to right successively. You may get different result by changing the specification order.
- Ordinary \texttt{subst()} performs substitution at all levels of a scalar algebraic expression creeping into arguments of function forms recursively. Function \texttt{psubst()} regards such a function form as an independent indeterminate, and does not attempt to apply substitution to its arguments. (The name comes after Partial SUBSTition.)
- Since \texttt{Asir} does not reduce common divisors of a rational expression automatically, substitution of a rational expression to an expression may cause unexpected increase of computation time. Thus, it is often necessary to write a special function to meet the individual problem so that the denominator and the numerator do not become too large.
- The same applies to substitution by rational numbers.

1. \texttt{subst(x^3-3*y*x^2+3*y^2*x-y^3,y,2); x^3-6*x^2+12*x-8}\n2. \texttt{subst(00,x,-1); -27}\n3. \texttt{subst(x^3-3*y*x^2+3*y^2*x-y^3,y,2,x,-1)};
-27
[3] subst(x*y^3,x,y,x);
x^4
[4] subst(x*y^3,y,x,x,y);
y^4
[5] subst(x*y^3,x,t,y,x,t,y);
y*x^3
[6] subst(x*sin(x),x,t);
sint(t)*t
[7] psubst(x*sin(x),x,t);
sin(x)*t

6.3.12 diff

diff(rat[,varn]*)

diff(rat,varlist)
    :: Differentiate rat successively by var's for the first form, or by variables in varlist for the second form.

return expression
rat rational expression which contains elementary functions.
varn indeterminate
varlist list of indeterminates

- Differentiate rat successively by var's for the first form, or by variables in varlist for the second form.
- differentiation is performed by the specified indeterminates (variables) from left to right. diff(rat,x,y) is the same as diff(diff(rat,x),y).

[0] diff((x+2*y)^2,x);
   2*x+4*y
[1] diff((x+2*y)^2,x,y);
   4
[2] diff(x/sin(log(x)+1),x);
   (sin(log(x)+1)-cos(log(x)+1))/(sin(log(x)+1)^2)
[3] diff(sin(x),[x,x,x,x]);
   sin(x)

6.3.13 res

res(var,poly1,poly2[,mod])
    :: Resultant of poly1 and poly2 with respect to var.

return polynomial
var indeterminate
poly1,poly2 polynomial
mod prime
- Resultant of two polynomials \( poly1 \) and \( poly2 \) with respect to \( var \).
- Sub-resultant algorithm is used to compute the resultant.
- The computation is done over \( GF(mod) \) if \( mod \) is specified.

\[
[0] \text{res}(t, (t^3+1)*x+1, (t^3+1)*y+t);
-x^3-x^2-y^3
\]

### 6.3.14 \texttt{fctr, sqfr}

\texttt{fctr(poly)}

:: Factorize polynomial \( poly \) over the rationals.

\texttt{sqfr(poly)}

:: Gets a square-free factorization of polynomial \( poly \).

\texttt{return} \quad \texttt{list}

\texttt{poly} \quad \text{polynomial with rational coefficients}

- Factorizes polynomial \( poly \) over the rationals. \texttt{fctr()} for irreducible factorization; \texttt{sqfr()} for square-free factorization.
- The result is represented by a list, whose elements are a pair represented as
  \([\text{num},1],[\text{factor},\text{multiplicity}],...\].
- Products of all \texttt{factor} \times \texttt{multiplicity} and \texttt{num} is equal to \( poly \).
- The number \texttt{num} is determined so that \((poly/num)\) is an integral polynomial and its content (GCD) of all coefficients is 1. (See Section 6.3.17 \texttt{[ptozp]}, page 51.)

\[
[0] \text{fctr}(x^5-1);
[[1,1],[x+1],[x+1],[x^4-x^3+x^2+1],[x^4-x^3+x^2-x+1,1]]
[1] \text{fctr}(x^3+y^3+(z/3)^3-x*y*z);
[[1/27,1],[9*x^2+(-9*y^3*z)*x+9*y^2-3*z*y+z^2,1],[3*x^3+y^2,1]]
[2] A=(a+b+c+d)^2;
\text{a}^2+2*\text{a}+\text{b}^2+\text{b}^2+\text{c}^2+\text{d}^2+\text{d}^2\text{c}^2+\text{d}^2\text{d}^2\text{c}^2+\text{d}^2
[3] \text{fctr}(A);
[[1,1],[a+b+c+d,1]]
[4] \text{A}=(x+1)*x^2-\text{y}^2-\text{z}^2;
\text{x}^5+\text{x}^4-\text{x}^3+\text{x}^2+\text{y}^2-\text{y}^4+\text{z}^4
[5] \text{sqfr}(A);
[[1,1],[x+1],[x^2+y^2,1]]
[6] \text{fctr}(A);
[[1,1],[x+1],[x-y,1],[x-y,1]]

\textbf{References}

Section 6.3.17 \texttt{[ufctehin]}], page 50.

### 6.3.15 \texttt{ufctehin}

\texttt{ufctehin(poly,hint)}

:: Factorizes uni-variate polynomial \( poly \) over the rational number field when the degrees of its factors are known to be some integer multiples of \( hint \).

\texttt{return} \quad \texttt{list}
poly  uni-variate polynomial with rational coefficients

hint  non-negative integer

- By any reason, if the degree of all the irreducible factors of poly is known to be some multiples of hint, factors can be computed more efficiently by the knowledge than fctr().
- When hint is 1, ufctrhint() is the same as fctr() for uni-variate polynomials. An typical application where ufctrhint() is effective: Consider the case where poly is a norm (See Chapter 9 [Algebraic numbers], page 136) of a certain polynomial over an extension field with its extension degree d, and it is square free; Then, every irreducible factor has a degree that is a multiple of d.

[10] A=t^9-15*t^6-87*t^3-125;
t^9-15*t^6-87*t^3-125
0msec

[11] N=ren(t,subst(A,t,x-2*t),A);
-x^8+1+1215*x^78-567405*x^75+139519665*x^72+19360343142*x^69+170634125410*x^66
-882499777024309*x^63+4856095669551930*x^60+1999385245240571421*x^57
-15579689952590251515*x^54+15956967531741971462865*x^51
...
+140395587203539735352612361266144550659875*x^6
+10122324287343155430042768923500799484375*x^3
+139262743444407310133459021182733314453125
980msec + gc : 250msec

[12] sqfr(N);
[[[-1,1],[x^81-1215*x^78+567405*x^75-139519665*x^72+19360343142*x^69
-170634125410*x^66+882499777024309*x^63+4856095669551930*x^60
-1999385245240571421*x^57+15579689952590251515*x^54]
...
-10122324287343155430042768923500799484375*x^3
-139262743444407310133459021182733314453125,1]]
20msec

[13] fctr(N);
[[[-1,1],[x^9-405*x^6-63423*x^3-2460375,1],
[x^18-486*x^15+98739*x^12-9316620*x^9+945468531*x^6-612368049246*x^3
+926607516309,1],[x^18-324*x^15+44469*x^12-1180980*x^9+427455711*x^6+2793253896*x^3+31524548679,1],
[x^18+10773*x^12+2784051*x^6+307546875,1]]
167.050sec + gc : 1.890sec

[14] ufctrhint(N,9);
[[[-1,1],[x^9-405*x^6-63423*x^3-2460375,1],
[x^18-486*x^15+98739*x^12-9316620*x^9+945468531*x^6-612368049246*x^3
+926607516309,1],[x^18-324*x^15+44469*x^12-1180980*x^9+427455711*x^6+2793253896*x^3+31524548679,1],
[x^18+10773*x^12+2784051*x^6+307546875,1]]
119.340sec + gc : 1.300sec

References
- Section 6.3.14 [fctr sqfr], page 49.
6.3.16 modfctr

modfctr(poly, mod)
  :: Univariate factorizer over small finite fields
return list
poly univariate polynomial with integer coefficients
mod non-negative integer
  • This function factorizes a univariate polynomial poly over the finite prime field of characteristic mod, where mod must be smaller than 2^31.
  • The result is represented by a list, whose elements are a pair represented as
    [[num,1],[factor,multiplicity],...].
  • Products of all factor*multiplicity and num is equal to poly.
  • To factorize polynomials over large finite fields, use fctr_ff (see Chapter 10 [Finite fields], page 148,Section 10.4.14 [fctr_ff], page 156).

[0] modfctr(x^10+x^2+1,2147483647);
[[1,1],[x+1513477736,1],[x+2055628767,1],[x+91854880,1],
 [x+634005911,1],[x+1513477735,1],[x+634005912,1],
 [x^4+1759639395*x^2+2045307031,1]]

References
   Section 6.3.14 [fctr sqfr], page 49.

6.3.17 ptozp

ptozp(poly)
  :: Converts a polynomial poly with rational coefficients into an integral polynomial such that GCD of all its coefficients is 1.
return polynomial
poly polynomial
  • Converts the given polynomial by multiplying some rational number into an integral polynomial such that GCD of all its coefficients is 1.
  • In general, operations on polynomials can be performed faster for integer coefficients than for rational number coefficients. Therefore, this function is conveniently used to improve efficiency.
  • Function red does not convert rational coefficients of the numerator. You cannot obtain an integral polynomial by direct use of the function nm(). The function nm() returns the numerator of its argument, and a polynomial with rational coefficients is the numerator of itself and will be returned as it is.

[0] ptozp(2*x+5/3);
6*x+5
[1] nm(2*x+5/3);
2*x+5/3

References
   Section 6.1.10 [nm dn], page 35.
6.3.18 prim, cont

\[ \text{prim}(\text{poly}[,v]) \]

:: Primitive part of poly.

\[ \text{cont}(\text{poly}[,v]) \]

:: Content of poly.

\[ \text{return poly} \]

polynomial over the rationals

\[ v \]

indeterminate

- The primitive part and the content of a polynomial poly with respect to its main variable \( v \) if specified:

\[ [0] \ E=(y-z)*(x+y)*(x-z)*(2*x-y); \]
\[ (2*y-2*z)*x^3+(-2-3*z*y+2*z^2)*x^2+(-y^-3+z^-2*y)*x+z*y^-3-z^-2*y^2 \]
\[ [1] \ \text{prim}(E); \]
\[ 2*x^2+(y-2*z)*x^2+(-y^-2-z*y)*x+z*y^2 \]
\[ [2] \ \text{cont}(E); \]
\[ y-z \]
\[ [3] \ \text{prim}(E,z); \]
\[ (y-z)*x-z*y*z^2 \]

References

Section 6.3.1 [var], page 41, Section 6.3.7 [ord], page 44.

6.3.19 gcd, gcdz

\[ \text{gcd}(\text{poly1},\text{poly2}[,\text{mod}]) \]

\[ \text{gcdz}(\text{poly1},\text{poly2}) \]

:: The polynomial greatest common divisor of \( \text{poly1} \) and \( \text{poly2} \).

\[ \text{return} \]

polynomial

\[ \text{poly1},\text{poly2} \]

polynomial

\[ \text{mod} \]

prime

- Functions \text{gcd}() and \text{gcdz}() return the greatest common divisor (GCD) of the given two polynomials.

- Function \text{gcd}() returns an integral polynomial GCD over the rational number field. The coefficients are normalized such that their GCD is 1. It returns 1 in case that the given polynomials are mutually prime.

- Function \text{gcdz}() works for arguments of integral polynomials, and returns a polynomial GCD over the integer ring, that is, it returns \text{gcd}() multiplied by the contents of all coefficients of the two input polynomials.

- \text{gcd}() computes the GCD over GF(mod) if mod is specified.

- Polynomial GCD is computed by an improved algorithm based on Extended Zassenhaus algorithm.
• GCD over a finite field is computed by PRS algorithm and it may not be efficient for large inputs and co-prime inputs.

\[
\begin{align*}
[0] & \text{gcd}(12*(x^2+2*y+z+1)^2, 18*(x^2+(y+1)*y)^3); \\
& x^3+3*x^2+3*x+1 \\
[1] & \text{gcd}(12*(x^2+2*y+z+1)^2, 18*(x^2+(y+1)*y)^3); \\
& 6*x^3+18*x^2+18*x+6 \\
[2] & \text{gcd}((x+y)*(x-y)^2, (x+y)^2*(x-y)); \\
& x^2-y \\
[3] & \text{gcd}((x+y)*(x-y)^2, (x+y)^2*(x-y), 2); \\
& x^3+y*x^2+y^2*x+y^3
\end{align*}
\]

References
Section 6.1.3 [igcd igcdcntl], page 32.

6.3.20 red

\texttt{red(rat)} :: Reduced form of \texttt{rat} by canceling common divisors.

\texttt{return} rational expression

\texttt{rat} rational expression

• \texttt{Asir} automatically performs cancellation of common divisors of rational numbers. But, without an explicit command, it does not cancel common polynomial divisors of rational expressions. (Reduction of rational expressions to a common denominator will always be done.) Use command \texttt{red()} to perform this cancellation.

• Cancel the common divisors of the numerator and the denominator of a rational expression \texttt{rat} by computing their GCD.

• The denominator polynomial of the result is an integral polynomial which has no common divisors in its coefficients, while the numerator may have rational coefficients.

• Since GCD computation is a very hard operation, it is desirable to detect and remove by any means common divisors as far as possible. Furthermore, a call to this function after swelling of the denominator and the numerator shall usually take a very long time. Therefore, often, to some extent, reduction of common divisors is inevitable for operations of rational expressions.

\[
\begin{align*}
[0] & (x^3-1)/(x-1); \\
& (x^3-1)/(x-1) \\
[1] & \text{red}((x^3-1)/(x-1)); \\
& x^2+x+1 \\
[2] & \text{red}((x^3+y^3+z^3-3*x*y*z)/(x+y+z)); \\
& x^2+(-y-z)*x+y^2-y*z^2 \\
[3] & \text{red}((3*x*y)/(12*x^2+21*y^2-3*x)); \\
& (y)/(4*x^2+y^2) \\
[4] & \text{red}((3/4*x^2+5/6*x)/(2*y*x+4/3*x)); \\
& (9/8*x+5/4)/(3*y+2)
\end{align*}
\]

References
Section 6.1.10 [nm dn], page 35, Section 6.3.19 [gcd gcdz], page 52, Section 6.3.17 [pto zp], page 51.
Chapter 6: Built-in Function

6.4 Univariate polynomials

6.4.1 umul, umul_ff, usquare, usquare_ff, utmul, utmul_ff

\texttt{umul}(p1,p2)
\texttt{umul_ff}(p1,p2)
:: Fast multiplication of univariate polynomials

\texttt{usquare}(p1)
\texttt{usquare_ff}(p1)
:: Fast squaring of a univariate polynomial

\texttt{utmul}(p1,p2,d)
\texttt{utmul_ff}(p1,p2,d)
:: Fast multiplication of univariate polynomials with truncation

\texttt{return} univariate polynomial

\texttt{p1} \texttt{p2} univariate polynomial
\texttt{d} non-negative integer

- These functions compute products of univariate polynomials by selecting an appropriate algorithm depending on the degrees of inputs.
- \texttt{umul()}, \texttt{usquare()}, \texttt{utmul()} compute products over the integers. Coefficients in \texttt{GF}(p) are regarded as non-negative integers less than p.
- \texttt{umul_ff()}, \texttt{usquare_ff()}, \texttt{utmul_ff()} compute products over a finite field. However, if some of the coefficients of the inputs are integral, the result may be an integral polynomial. So if one wants to assure that the result is a polynomial over the finite field, apply \texttt{simp_ff()} to the inputs.
- \texttt{umul_ff()}, \texttt{usquare_ff()}, \texttt{utmul_ff()} cannot take polynomials over \texttt{GF}(2^n) as their inputs.
- \texttt{umul()}, \texttt{umul_ff()} produce \texttt{p1*p2}. \texttt{usquare()}, \texttt{usquare_ff()} produce \texttt{p1^2}.
\texttt{utmul()}, \texttt{utmul_ff()} produce \texttt{p1*p2 mod v^(d+1)}, where \texttt{v} is the variable of \texttt{p1}, \texttt{p2}.
- If the degrees of the inputs are less than or equal to the value returned by \texttt{set_upkara()} (\texttt{set_upkara()} for \texttt{utmul}, \texttt{utmul_ff()}), usual pencil and paper method is used. If the degrees of the inputs are less than or equal to the value returned by \texttt{set_upfft()}, Karatsuba algorithm is used. If the degrees of the inputs exceed it, a combination of FFT and Chinese remainder theorem is used. First of all sufficiently many primes \texttt{mi} within 1 machine word are prepared. Then \texttt{p1*p2 mod mi} is computed by FFT for each \texttt{mi}. Finally they are combined by Chinese remainder theorem. The functions over finite fields use an improvement by V. Shoup [Shoup].

\begin{verbatim}
[176] load("fff")$
[177] cputime(1)$
0sec(1.407e-05sec)
[178] setmod_ff(2^160-47);
1461501637330902918203684832716283019655932542929
0sec(0.00028sec)
[179] A=randpoly_ff(100,x)$
\end{verbatim}
0sec(0.001422sec)
[180] B=randpoly_ff(100,x)$
0sec(0.00107sec)
[181] for(I=0;I<100;I++)A*B;
7.77sec + gc : 8.38sec(16.15sec)
[182] for(I=0;I<100;I++)umul(A,B);
2.24sec + gc : 1.52sec(3.767sec)
[183] for(I=0;I<100;I++)usquare_ff(A);
1.42sec + gc : 0.24sec(1.653sec)
[184] for(I=0;I<100;I++)utmul_ff(A,B,100);
1.08sec + gc : 0.21sec(1.297sec)
[185] deg(utmul_ff(A,B,100),x);
0

References
Section 6.4.3 [set_upkara set_uptkara set_upfft], page 56, Section 6.4.2
[kmul ksquare ktmul], page 55.

6.4.2 kmul, ksquare, ktmul

kmul(p1,p2)
:: Fast multiplication of univariate polynomials

ksquare(p1)
:: Fast squaring of a univariate polynomial

ktmul(p1,p2,d)
:: Fast multiplication of univariate polynomials with truncation

return univariate polynomial
p1 p2 univariate polynomial
d non-negative integer

These functions compute products of univariate polynomials by Karatsuba algorithm.

- These functions do not apply FFT for large degree inputs.
- These functions can compute products over GF(2^n).

[0] load("code/fff");
1
[34] setmod_ff(defpoly_mod2(160));
x^160+x^5+x^3+x^2+1
[35] A=randpoly_ff(100,x)$
[36] B=randpoly_ff(100,x)$
[37] umul(A,B)$

umul : invalid argument
return to toplevel
[37] kmul(A,B)$
6.4.3 set_upkara, set_upktara, set_upfft

set_upkara([threshold])
set_upktara([threshold])
set_upfft([threshold])
   :: Set thresholds in the selection of an algorithm from N^-2, Karatsuba, FFT
   algorithms for univariate polynomial multiplication.

return value currently set

threshold non-negative integer
   - These functions set thresholds in the selection of an algorithm from N^-2, Karatsuba,
     FFT algorithms for univariate polynomial multiplication.
   - Products of univariate polynomials are computed by N^-2, Karatsuba, FFT algorithms.
     The algorithm selection is done according to the degrees of input polynomials and the
     thresholds.
   - See the description of each function for details.

References
   Section 6.4.2 [kmul ksquare ktmul], page 55, Section 6.4.1 [umul umul_ff
   usquare usquare_ff utmul utmul_ff], page 54.

6.4.4 utrunc, udecomp, ureverse

utrunc(p, d)
udecomp(p, d)
ureverse(p)
   :: Operations on polynomials

return univariate polynomial or list of univariate polynomials

p univariate polynomial

d non-negative integer
   - Let x be the variable of p. Then p can be decomposed as p = p1 + x^-(d+1)p2, where
     the degree of p1 is less than or equal to d. Under the decomposition, utrunc() returns
     p1 and udecomp() returns [p1, p2].
   - Let e be the degree of p and p[i] the coefficient of p at degree i. Then ureverse()
     returns p[e]*p[e-1]*x*....

[132] utrunc((x+1)^10,5);
252*x^5+210*x^4+120*x^3+45*x^2+10*x+1
[133] udecomp((x+1)^10,5);
[252*x^5+210*x^4+120*x^3+45*x^2+10*x+1, x^4+10*x^3+45*x^2+120*x+210]
[134] ureverse(3*x^3+x^2+2*x);
2*x^2+2+x+3

References
   Section 6.4.6 [udiv urem urembymul urembymul_precomp ugcd], page 58.
6.4.5 univ_as_power_series, ureverse_inv_as_power_series

univ_as_power_series(p,d)
ureverse_inv_as_power_series(p,d)
:: Computes the truncated inverse as a power series.
return univariate polynomial
p univariate polynomial
d non-negative integer

- For a polynomial \( p \) with a non-zero constant term, \( \text{univ_as_power_series}(p,d) \) computes a polynomial \( r \) whose degree is at most \( d \) such that \( p^r = 1 \mod x^{d+1} \), where \( x \) is the variable of \( p \).

- Let \( e \) be the degree of \( p \). \( \text{ureverse_inv_as_power_series}(p,d) \) computes \( \text{univ_as_power_series}(p1,d) \) for \( p1=\text{ureverse}(p,e) \).

- The output of \( \text{ureverse_inv_as_power_series}() \) can be used as the input of \( \text{rembymul_precomp}() \).

\[
\begin{align*}
[123] \ A=&(x^1+1)^5; \\
x^5+5*x^4+10*x^3+10*x^2+5*x+1 \\
[124] \ \text{univ_as_power_series}(A,5); \\
-126*x^5+70*x^4-35*x^3+15*x^2-5*x+1 \\
[126] \ A*R; \\
-126*x^10-560*x^9-945*x^8-720*x^7-210*x^6+1 \\
[127] \ A=x^10+x^9; \\
x^10+x^9 \\
[128] \ R=\text{ureverse_inv_as_power_series}(A,5); \\
-x^15+x^14-x^3+x^2-x+1 \\
[129] \ \text{ureverse}(A)*R; \\
-x^6+1
\end{align*}
\]

References
Section 6.4.4 [utrancl udecomp ureverse], page 56, Section 6.4.6 [udiv urem urembymul urembymul_precomp ugcd], page 58.

6.4.6 udiv, urem, urembymul, urembymul_precomp, ugcd

udiv(p1,p2)
urem(p1,p2)
urembymul(p1,p2)
urembymul_precomp(p1,p2,inv)
ugcd(p1,p2)
:: Division and GCD for univariate polynomials.
return univariate polynomial
p1,p2,inv univariate polynomial

- For univariate polynomials \( p1 \) and \( p2 \), there exist polynomials \( q \) and \( r \) such that \( p1=q*p2*r \) and the degree of \( r \) is less than that of \( p2 \). Then \( \text{udiv} \) returns \( q \), \( \text{urem} \)
and urembymul return \( r \). \texttt{gcd} returns the polynomial GCD of \( p1 \) and \( p2 \). These functions are specially tuned up for dense univariate polynomials. In \texttt{urembymul} the division by \( p2 \) is replaced with the inverse computation of \( p2 \) as a power series and two polynomial multiplications. It speeds up the computation when the degrees of inputs are large.

- \texttt{urembymul\_precomp} is efficient when one repeats divisions by a fixed polynomial. One has to compute the third argument by \texttt{ureverse\_inv\_as\_power\_series()}.

```
[177] \texttt{setmod_ff(2^{160}-47);}
1461501637330902918203684832716283019655932542929
[178] \texttt{A=\texttt{randpoly_ff}(200,x);}
[179] \texttt{B=\texttt{randpoly_ff}(101,x);}
[180] \texttt{cputime(1);}
0sec(1.597e-05sec)
[181] \texttt{srem(A,B);}
0.15sec + gc : 0.15sec(0.3035sec)
[182] \texttt{urem(A,B);}
0.11sec + gc : 0.12sec(0.2347sec)
[183] \texttt{urembymul(A,B);}
0.08sec + gc : 0.09sec(0.1651sec)
[184] \texttt{R=\texttt{ureverse_inv_as_power_series}(B,101);}
0.04sec + gc : 0.03sec(0.063sec)
[185] \texttt{urembymul_precomp(A,B,R);}
0.03sec(0.02501sec)
```

References

Section 6.4.5 [\texttt{inv\_as\_power\_series} \texttt{ureverse\_inv\_as\_power\_series}], page 57.

### 6.5 Lists

#### 6.5.1 \texttt{car}, \texttt{cdr}, \texttt{cons}, \texttt{append}, \texttt{reverse}, \texttt{length}

- \texttt{car(list)} :: The first element of the given non-null list \( list \).
- \texttt{cdr(list)} :: A list obtained by removing the first element of the given non-null list \( list \).
- \texttt{cons(obj,list)} :: A list obtained by adding an element \( obj \) to the top of the given list \( list \).
- \texttt{append(list1,list2)} :: A list obtained by adding all elements in the list \( list2 \) according to the order as it is to the last element in the list \( list1 \).
- \texttt{reverse(list)} :: reversed list of \( list \).
- \texttt{length(list)} :: Number of elements in a list \( list \).

\texttt{return car()} : arbitrary, \texttt{cdr()}, \texttt{cons()}, \texttt{append()}, \texttt{reverse()} : \( list \), \texttt{length()} : non-negative integer
list, list1, list2

list

obj arbitrary

- A list is written in Asir as [obj1, obj2, ...]. Here, obj1 is the first element.
- Function car() outputs the first element of a non-null list. For a null list, the result should be undefined. In the current implementation, however, it outputs a null list. This treatment for a null list may subject to change in future, and users are suggested not to use the tentative treatment for a null list for serious programming.
- Function cdr() outputs a list obtained by removing the first element from the input non-null list. For a null list, the result should be undefined. In the current implementation, however, it outputs a null list. This treatment for a null list may subject to change in future, and users are suggested not to use the tentative treatment for a null list for serious programming.
- Function cons() composes a new list from the input list list and an arbitrary object obj by adding obj to the top of list.
- Function append() composes a new list, which has all elements of list1 in the same ordering followed by all elements of list2 in the same ordering.
- Function reverse() returns a reversed list of list.
- Function length() returns a non-negative integer which is the number of elements in the input list list. Note that function size should be used for counting elements of vector and matrix.
- Lists are read-only objects in Asir. There elements cannot be modified.
- The n-th element in a list can be referred to by applying the function cdr() n times repeatedly and cdr() at last. A more convenient way to access to the n-th element is the use of bracket notation, that is, to attach an index [n] like vectors and matrices. The system, however, follow the n pointers to access the desired element. Subsequently, much time is spent for an element located far from the top of the list.
- Function cdr() does not create a new cell (a memory quantity). Function append(), as a matter of fact, repeats cons() for as many as the length of list1 the first argument. Subsequently, append() consumes much memory space if its first argument is long.

Similar argument applies to function reverse().

```
[0] L = [[1,2,3],4,[5,6]];
[[1,2,3],4,[5,6]]
[1] car(L);
[1,2,3]
[2] cdr(L);
[4,[5,6]]
[3] cons(x*y,L);
[y*x,[1,2,3],4,[5,6]]
[4] append([a,b,c],[d]);
[a,b,c,d]
[5] reverse([a,b,c,d]);
[d,c,b,a]
[6] length(L);
3
```
[7] L[2][0];
5

6.6 Arrays

6.6.1 newvect

newvect(len[, list])
    :: Creates a new vector object with its length len.

return vector
len non-negative integer
list

- Creates a new vector object with its length len and its elements all cleared to value 0. If the second argument, a list, is given, the vector is initialized by the list elements. Elements are used from the first through the last. If the list is short for initializing the full vector, 0's are filled in the remaining vector elements.
- Elements are indexed from 0 through len-1. Note that the first element has not index 1.
- List and vector are different types in Asir. Lists are conveniently used for representing many data objects whose size varies dynamically as computation proceeds. By its flexible expressive power, it is also conveniently used to describe initial values for other structured objects as you see for vectors. Access for an element of a list is performed by following pointers to next elements. By this, access costs for list elements differ for each element. In contrast to lists, vector elements can be accessed in a same time, because they are accessed by computing displacements from the top memory location of the vector object.

Note also, in Asir, modification of an element of a vector causes modification of the whole vector itself, while modification of a list element does not cause the modification of the whole list object.

By this, in Asir language, a vector element designator can be a left value of assignment statement, but a list element designator can NOT be a left value of assignment statement.

- No distinction of column vectors and row vectors in Asir. If a matrix is applied to a vector from left, the vector shall be taken as a column vector, and if from right it shall be taken as a row vector.
- The length (or size or dimension) of a vector is given by function size().
- When a vector is passed to a function as its argument (actual parameter), the vector element can be modified in that function.
- A vector is displayed in a similar format as for a list. Note, however, there is a distinction: Elements of a vector are separated simply by a 'blank space', while those of a list by a 'comma.'

[0] A=newvect(5);
[ 0 0 0 0 0 ]
[1] A=newvect(5,[1,2,3,4,[5,6]]);
[ 1 2 3 4 [5,6] ]
[2] A[0];
1
[5,6]
[4] size(A);
[5]
[5] def afo(V) { V[0] = x; }
[6] afo(A)$
[7] A;
[ x 2 3 4 [5,6] ]

References
Section 6.6.4 [newmat], page 62, Section 6.6.5 [size], page 63, Section 6.6.2 [vtol], page 61.

6.6.2 vtol

vtol(vect)

:: Converts a vector into a list.

return list

vect vector

- Converts a vector vect of length n into a list [vect[0],...,vect[n-1]].
- A conversion from a list to a vector is done by newvect().

[3] A=newvect(3,[1,2,3]);
[ 1 2 3 ]
[4] vtol(A);
[1,2,3]

References
Section 6.6.1 [newvect], page 60.

6.6.3 newbytearray

newbytearray(len,[listorstring])

:: Creates a new byte array.

return byte array

len non-negative integer

listorstring list or string

- This function generates a byte array. The specification is similar to that of newvect.
- The initial value can be specified by a character string.
- One can access elements of a byte array just as an array.
[182] A=newbytearray(3);
[00 00 00]
[183] A=newbytearray(3,[1,2,3]);
[01 02 03]
[184] A=newbytearray(3,"abc");
[61 62 63]
[185] A[0];
97
123
[187] A;
[61 7b 63]

References
Section 6.6.1 [newvect], page 60.

6.6.4 newmat

newmat(row,col [,,[a,b,...],[c,d,...],...])
:: Creates a new matrix with row rows and col columns.
return matrix
row,col non-negative integer
a,b,c,d arbitrary

- If the third argument, a list, is given, the newly created matrix is initialized so that each
element of the list (again a list) initializes each of the rows of the matrix. Elements are
used from the first through the last. If the list is short, 0's are filled in the remaining
matrix elements. If no third argument is given all the elements are cleared to 0.

- The size of a matrix is given by function size().

- Let M be a program variable assigned to a matrix. Then, M[I] denotes a (row) vector
which corresponds with the I-th row of the matrix. Note that the vector shares its
element with the original matrix. Subsequently, if an element of the vector is modified,
then the corresponding matrix element is also modified.

- When a matrix is passed to a function as its argument (actual parameter), the matrix
element can be modified within that function.

  [0] A = newmat(3,3,[[1,1,1],[x,y],[x^2]]);
  [ 1 1 1 ]
  [ x y 0 ]
  [ x^2 0 0 ]
  [1] det(A);
  -y*x^2
  [2] size(A);
  [3,3]
  [ x y 0 ]
getarray : Out of range
return to toplevel
References
Section 6.6.1 \texttt{newvect}, page 60, Section 6.6.5 \texttt{size}, page 63, Section 6.6.6 \texttt{det}, page 64.

6.6.5 \texttt{size}

\texttt{size(vect|mat)}
\begin{itemize}
\item A list containing the number of elements of the given vector, \texttt{[size of vect]}, or a list containing row size and column size of the given matrix, \texttt{[row size of mat, column size of mat]}.
\end{itemize}

\texttt{return} list
\texttt{vect} vector
\texttt{mat} matrix

\begin{itemize}
\item Return a list consisting of the dimension of the vector \texttt{vect}, or a list consisting of the row size and column size of the matrix \texttt{matrix}.
\item Use \texttt{length()} for the size of \texttt{list}, and \texttt{nmono()} for the number of monomials with non-zero coefficients in a rational expression.
\end{itemize}

\begin{verbatim}
[0] A = newvect(4);
[0 0 0 0 ]
[1] size(A);
[4]
[2] B = newmat(2,3,[[1,2,3],[4,5,6]]);
[1 2 3 ]
[4 5 6 ]
[3] size(B);
[2,3]
\end{verbatim}

References
Section 6.5.1 \texttt{[car cdr cons append reverse length]}, page 58, Section 6.3.6 \texttt{[nmono]}, page 44.

6.6.6 \texttt{det}

\texttt{det(mat[,mod])}
\begin{itemize}
\item Determinant of \texttt{mat}.
\end{itemize}

\texttt{return} expression
\texttt{mat} matrix
\texttt{mod} prime

\begin{itemize}
\item Determinant of matrix \texttt{mat}.
\item The computation is done over $\text{GF}(mod)$ if \texttt{mod} is specified.
\item The fraction free Gaussian algorithm is employed. For matrices with multi-variate polynomial entries, minor expansion algorithm sometimes is more efficient than the fraction free Gaussian algorithm.
\end{itemize}
[91] A=newmat(5,5)
[92] V=[x,y,z,u,v];
[93] [x,y,z,u,v]
[94] for(I=0;I<5;I++)for(J=0;B=A[I],W=V[I];J<5;J++)B[J]=W^J;
[95] A;
[ 1 x x^2 x^3 x^4 ]
[ 1 y y^2 y^3 y^4 ]
[ 1 z z^2 z^3 z^4 ]
[ 1 u u^2 u^3 u^4 ]
[ 1 v v^2 v^3 v^4 ]
[96] fctr(det(A));
[[1,1],[u-v,1],[-z+v,1],[-y+u,1],[y-v,1],[-y+z,1],[x+u,1],[x-z,1],
[[x+v,1],[x+y,1]]

References
Section 6.6.4 [newmat], page 62.

6.6.7 qsort

qsort(array [,func])
:: Sorts an array array.
return array (The same as the input; Only the elements are exchanged.)
array array
func function for comparison
• This function sorts an array by quick sort.
• If func is not specified, the built-in comparison function is used and the array is sorted in increasing order.
• If a function of two arguments func which returns 0, 1, or -1 is provided, then an ordering is determined so that A>B if func(A,B)=1 holds, and the array is sorted in increasing order with respect to the ordering.
• The returned array is the same as the input. Only the elements are exchanged.
[0] qsort(newvect(10,[1,4,6,7,3,2,9,6,0,-1]));
[ 1 0 1 2 3 4 6 6 7 9 ]
[1] def rev(A,B) { return A>B?-1:(A<B?1:0); } 
[2] qsort(newvect(10,[1,4,6,7,3,2,9,6,0,-1]),rev);
[ 9 7 6 6 4 3 2 1 0 -1 ]

References
Section 6.3.7 [ord], page 44, Section 6.3.2 [vars], page 42.

6.7 Structures

6.7.1 newstruct

newstruct(name)
:: Creates a new structure object whose name is name.
return structure

name string

- This function creates a new structure object whose name is name.
- A structure named name should be defined in advance.
- Each member of a structure is specified by its name using the operator \(\rightarrow\). If the
  specified member is also a structure, the specification by \(\rightarrow\) can be nested.

\[
\begin{align*}
[0] & \text{struct list \{h,t\};} \\
0 & \\
[1] & A=\text{newstruct(list);} \\
& \{0,0\} \\
[2] & A\rightarrow t = \text{newstruct(list);} \\
& \{0,0\} \\
[3] & A; \\
& \{0,\{0,0\}\} \\
[4] & A\rightarrow h = 1; \\
1 & \\
[5] & A\rightarrow t\rightarrow h = 2; \\
2 & \\
[6] & A\rightarrow t\rightarrow t = 3; \\
3 & \\
[7] & A; \\
& \{1,\{2,3\}\}
\end{align*}
\]

References
Section 6.7.2 [arfreg], page 65, Section 4.2.9 [structure definition], page 23

### 6.7.2 arfreg

arfreg(name, add, sub, mul, div, pwr, chsgn, comp)
:: Registers a set of fundamental operations for a type of structure.

return 1

name string

add, sub, mul, div, pwr, chsgn, comp
:: user defined functions

- This function registers a set of fundamental operations for a type of structure whose
  name is name.
- The specification of each function is as follows.

\[
\begin{align*}
\text{add}(A,B) & = A+B \\
\text{sub}(A,B) & = A-B \\
\text{mul}(A,B) & = A\times B \\
\text{div}(A,B) & = A/B \\
\text{pwr}(A,B) & = A^{-B} \\
\text{chsgn}(A) & = -A
\end{align*}
\]
\text{\texttt{comp}(A,B)}
\begin{equation}
1,0,-1 \text{ according to the result of a comparison between } A \text{ and } B.
\end{equation}

% cat test
struct a \{id,body\}$

def add(A,B)
{
  C = newstruct(a);
  C->id = A->id; C->body = A->body+B->body;
  return C;
}

def sub(A,B)
{
  C = newstruct(a);
  C->id = A->id; C->body = A->body-B->body;
  return C;
}

def mul(A,B)
{
  C = newstruct(a);
  C->id = A->id; C->body = A->body*B->body;
  return C;
}

def div(A,B)
{
  C = newstruct(a);
  C->id = A->id; C->body = A->body/B->body;
  return C;
}

def pwr(A,B)
{
  C = newstruct(a);
  C->id = A->id; C->body = A->body^B;
  return C;
}

def chsgn(A)
{
  C = newstruct(a);
  C->id = A->id; C->body = -A->body;
  return C;
}

def comp(A,B)
{
if ( A->body > B->body )
  return 1;
else if ( A->body < B->body )
  return -1;
else
  return 0;
}

arfreg("a",add,sub,mul,div,pwr,chsgn,comp)$
end$

This is Risa/Asir, Version 20000908.
Copyright (C) FUJITSU LABORATORIES LIMITED.
1994-2000. All rights reserved.
[0] load("./test")$
[11] A=newstruct(a);
{0,0}
[12] B=newstruct(a);
{0,0}
3
[14] B->body = 4;
4
{0,12}

References
Section 6.7.1 [newstruct], page 65, Section 4.2.9 [structure definition],
page 23

6.8 Types

6.8.1 type

type(obj) :: Returns an integer which identifies the type of the object obj in question.
return integer
obj arbitrary

- Current assignment of integers for object types is listed below.
  0       0
  1       number
  2       polynomial (not number)
  3       rational expression (not polynomial)
  4       list
  5       vector
6 matrix
7 string
8 structure
9 distributed polynomial
10 32bit unsigned integer
11 error object
12 matrix over GF(2)
13 MATHCAP object
14 first order formula
-1 VOID object

- For further classification of number, use ntype(). For further classification of variable, use vtype().

References
Section 6.8.2 [n\text{type}], page 68, Section 6.8.3 [v\text{type}], page 69.

6.8.2 \text{n\text{type}}

\text{n\text{type}}(\text{num})
:: Classifier of type \text{num}. Returns a sub-type number, an integer, for \text{obj}.

\text{return} \quad \text{integer}

\text{obj} \quad \text{number}

- Sub-types for type number are listed below.
  0 rational number
  1 floating double (double precision floating point number)
  2 algebraic number over rational number field
  3 arbitrary precision floating point number (\text{b\text{ig\float}})
  4 complex number
  5 element of a finite field
  6 element of a large finite prime field
  7 element of a finite field of characteristic 2

- When arithmetic operations for numbers are performed, type coercion will be taken if their number sub-types are different so that the object having smaller sub-type number will be transformed to match the other object, except for algebraic numbers.

- A number object created by \text{n\text{ew\text{alg}}}(x^{2}+1) and the unit of imaginary number \text{\Theta i} have different number sub-types, and it is treated independently.

- See Chapter 9 [Algebraic numbers], page 136 for algebraic numbers.
[0] [10/37, ntype(10/37)];
[10/37, 0]
[1] [10.0/37.0, ntype(10.0/37.0)];
[0.27027, 1]
[2] [newalg(x^2+1), ntype(newalg(x^2+1))];
[(#0+1), 2]
[3] [eval(sin(@pi/6)), ntype(eval(sin(@pi/6)))];
[0.49999999999999991, 3]
[4] [0i+1, ntype(0i+1)];
[(1+1*0i), 4]

References
Section 6.8.1 [type], page 68.

6.8.3 vtype

vtype(var)
:: Type of indeterminates var.

return integer

var indeterminate

• Classify indeterminates into sub-types by giving an integer value as follows. For details
  See Section 3.3 [Types of indeterminates], page 15.

  0 ordinary indeterminate, which can be directly typed in on a keyboard
    (a, b, x, a0, b0, ..., etc.)

  1 Special indeterminate, created by uc() (-0, -1, -2, ... etc.)

  2 function form (sin(x), log(a+1), acosh(1), @pi, @e, ... etc.)

  3 functor (built-in functor name, user defined functor, functor for the ele-
    mentary functions): sin, log, ... etc.

• Note: An input ‘a();’ will cause an error, but it changes the system database for
  identifiers. After this error, you will find ‘vtype(a)’ will result 3. (Identifier a is
  registered as a user defined functor).

• Usually @pi and @e are treated as indeterminates, whereas they are treated as numbers
  within functions eval() and pari().

References
Section 6.8.1 [type], page 68, Section 6.8.2 [ntype], page 68, Section 6.3.3 [uc],
page 42.

6.9 Operations on functions

6.9.1 functor, args, funargs

functor(func)
:: Functor of function form func.
args(func)
  :: List of arguments of function form func.

funargs(func)
  :: cons(functor(func),args(func)).

return functor() : indeterminate, args(), funargs() : list
func function form
  • See Section 6.8.3 [vtype], page 69 for function form.
  • Extract the functor and the arguments of function form func.
  • Assign a program variable, say F, to the functor obtained by functor(). Then, you can type (*F)(x) (, or (*F)(x,y,...) depending on the arity,) to input a function form with argument x.
    [0] functor(sin(x));
    sin
    [0] args(sin(x));
    [x]
    [0] funargs(sin(3*cos(y)));
    [sin,3*cos(y)]
    [1] for (L=[sin,cos,tan];L!=[];L=cdr(L)) {A=car(L); print(eval((*A)(@pi/3)));}
    0.86602540349122136831
    0.5000000002
    1.7320508058

References
  Section 6.8.3 [vtype], page 69.

6.10 Strings

6.10.1 rtostr

rtostr(obj)
  :: Convert obj into a string.

return string

obj arbitrary
  • Convert an arbitrary object obj into a string.
  • This function is convenient to create variables with numbered (or indexed) names by converting integers into strings and appending them to some name strings.
  • Use strtof() for inverse conversion from string to indeterminate.
    [0] A=afo;
    afo
    [1] type(A);
    2
    [2] B=rtostr(A);
    afo
[3] type(B);
    7
[4] B="1";
afo

References
Section 6.10.2 [strtof], page 71, Section 6.8.1 [type], page 68.

6.10.2 strtof

strtof(str)
:: Convert a string str into an indeterminate.
return int and indeterminate
str string which is valid to constitute an indeterminate.

- Convert a string that is valid for an indeterminate into an indeterminate which have
  str as its print name.
- The valid string for an indeterminate is such a string that begins with a small alphabetical
  letter possibly followed by any string composed of alphabetical letters, digits or a
  symbol ‘_’.
- Use the command to create indeterminates dynamically in programs.

[0] A="afo";
afo
[1] for (I=0;I<3;I++) {B=strtof(A+rtostr(I)); print([B,type(B)]);}
[afo0,2]
[afo1,2]
[afo2,2]

References
Section 6.10.1 [rtostr], page 70, Section 6.8.1 [type], page 68, Section 6.3.3
[uc], page 42.

6.10.3 eval_str

eval_str(str)
:: Evaluates a string str.
return object
str string which can be accepted by Asir parser

- This function evaluates a string which can be accepted by Asir parser and returns the
  result.
- The input string should represent an expression.
- This functions is the inversion function of rtostr().

[0] eval_str("1+2");
  3
[1] fc.tr(eval_str(rtostr((x+y)\^10)));
[[[1,1],[x+y,10]]]
References
   Section 6.10.1 [rtostr], page 70

6.10.4 strtoascii, asciitostr

strtoascii(str)
:: Converts a string into a sequence of ASCII codes.

asciitostr(list)
:: Converts a sequence of ASCII codes into a string.

return strtoascii():list; asciitostr():string

str string

list list containing positive integers less than 256.

- strtoascii() converts a string into a list of integers which is a representation of the string by the ASCII code.
- asciitostr() is the inverse of asciitostr().

[0] strtoascii("abcxyz");
[97,98,99,120,121,122]
[1] asciitostr(0);
   abcxyz
[2] asciitostr([256]);
   asciitostr : argument out of range
   return toplevel

6.10.5 str_len, str_chr, sub_str

str_len(str)
:: Returns the length of a string.

str_chr(str, start, c)
:: Returns the position of the first occurrence of a character in a string.

sub_str(str, start, end)
:: Returns a substring of a string.

return str_len(), str_chr():integer; sub_str():string

str,c string

start,end non-negative integer

- str_len() returns the length of a string.
- str_chr() scans a string str from the start-th character and returns the position of the first occurrence of the first character of a string c. Note that the top of a string is the 0-th charater. It returns -1 if the character does not appear.
- sub_str() generates a substring of str containing characters from the start-th one to the end-th one.
[185] Line="123 456 (x+y)^3";
123 456 (x+y)^3
[186] S1 = str_chr(Line,0," ");
3
[187] D0 = eval_str(sub_str(Line,0,Sp1-1));
123
[188] Sp2 = str_chr(Line,Sp1+1," ");
7
[189] D1 = eval_str(sub_str(Line,Sp1+1,Sp2-1));
456
[190] C = eval_str(sub_str(Line,Sp2+1,str_len(Line)-1));
x^3+3*y*x^2+3*y^2*x+y^3

6.11 Inputs and Outputs

6.11.1 end, quit

end, quit
:: Close the currently reading file. At the top level, terminate the Asir session.
- These two functions take no arguments. These functions can be called without a ‘()’. Either function close the current input file. This means the termination of the Asir session at the top level.
- An input file will be automatically closed if it is read to its end. However, if no end$ is written at the last of the input file, the control will be returned to the top level and Asir will be waiting for an input without any prompting. Thus, in order to avoid confusion, putting a end$ at the last line of the input file is strongly recommended.

[6] quit;
%

References

Section 6.11.2 load, page 73.

6.11.2 load

load("filename")
:: Reads a program file filename.
return (1|0)
filename file (path) name
- See Chapter 4 [User language Asir], page 17 for practical programming. Since text files are read through cpp, the user can use, as in C programs, #include and #define in Asir program source codes.
- It returns 1 if the designated file exists, 0 otherwise.
- If the filename begins with ‘/’, it is understood as an absolute path name; with ‘.’, relative path name from current directory; otherwise, the file is searched first from directories assigned to an environmental variable ASIRLOADPATH, then if the search ends
up in failure, the standard library directory (or directories assigned to ASIR_LIBDIR) shall be searched. On Windows, \texttt{get\_rootdir()}/\texttt{lib} is searched if \texttt{ASIR_LIBDIR} is not set.

- We recommend to write an \texttt{end} command at the last line of your program. If not, \texttt{Asir} will not give you a prompt after it has executed \texttt{load} command. (Escape with an interrupt character (see Section 2.7 [\textit{Interruption}], page 8), if you have lost yourself.) Even in such a situation, \texttt{Asir} itself is still ready to read keyboard inputs as usual. It is, however, embarrassing and may cause other errors. Therefore, to put an \texttt{end$} at the last line is desirable. (Command \texttt{end}; will work as well, but it also returns and displays verbose.)

- On Windows one has to use ‘/’ as the separator of directory names.

\textbf{References}

Section 6.11.1 [\texttt{end quit}], page 73, Section 6.11.3 [\texttt{which}], page 74, Section 6.12.14 [\texttt{get\_rootdir}], page 87.

\textbf{6.11.3 which}

\texttt{which("filename")}

\hspace{1cm}:: This returns the path name for the \textit{filename} which \texttt{load()} will read.

\hspace{1cm}\texttt{return path name}

\texttt{filename} \hspace{0.5cm} filename (path name) or 0

- This function searches directory trees according to the same procedure as \texttt{load()} will do. Then, returns a string, the path name to the file if the named file exists; 0 unless otherwise.

- For details of searching procedure, refer to the description about \texttt{load()}.

- On Windows one has to use ‘/’ as the separator of directory names.

\texttt{[0] which("gr");}
\hspace{2cm}.\texttt{/gb/gr}
\texttt{[1] which("/usr/local/lib/gr");}
\hspace{2cm}0
\texttt{[2] which("/usr/local/lib/asir/gr");}
\hspace{2cm}/usr/local/lib/asir/gr

\textbf{References}

Section 6.11.2 [\texttt{load}], page 73.

\textbf{6.11.4 output}

\texttt{output(["filename"])}

\hspace{1cm}:: Writes the return values and prompt onto file \textit{filename}.

\hspace{1cm}\texttt{return 1}

\texttt{filename} \hspace{0.5cm} filename

- Standard output stream of \texttt{Asir} is redirected to the specified file. While \texttt{Asir} is writing its outputs onto a file, no outputs, except for keyboard inputs and some of error
messages, are written onto the standard output. (You cannot see the result on the display.)

- To direct the Asir outputs to the standard output, issue the command without argument, i.e., output().
- If the specified file already exists, new outputs will be added to the tail of the file. If not, a file is newly created and the outputs will be written onto the file.
- When file name is specified without double quotes (""), or when protected file is specified, an error occurs and the system returns to the top level.
- If you want to write inputs from the keyboard onto the file as well as Asir outputs, put command ctrl("echo",1), and then redirect the standard output to your desired file.
- Contents which are written onto the standard error output, CPU time etc., are not written onto the file.
- Reading and writing algebraic expressions which contain neither functional forms nor unknown coefficients (vtype) References are performed more efficiently, with respect to both time and space, by bload() and bsave().
- On Windows one has to use '/' as the separator of directory names.

```
[83] output("afo");
fctr(x^2-y^2);
print("afo");
output();
1
[87] quit;
% cat afo
1
[84] [[1,1],[x+y,1],[x-y,1]]
[85] afo
0
[86]
```

References
Section 6.12.1 [ctrl], page 79, Section 6.11.5 [bsave bload], page 75.

### 6.11.5 bsave, bload

bsave(obj,"filename")
:: This function writes obj onto filename in binary form.

bload("filename")
:: This function reads an expression from filename in binary form.

return bsave() : 1, bload() : the expression read

obj arbitrary expression which does not contain neither function forms nor unknown coefficients.

filename filename
- Function `bsave()` writes an object onto a file in its internal form (not exact internal form but very similar). Function `bload()` read the expression from files which is written by `bsave()`. Current implementation support arbitrary expressions, including lists, arrays (i.e., vectors and matrices), except for function forms and unknown coefficients (`vtype()`) References.

- The parser is activated to retrieve expressions written by `output()` , whereas internal forms are directly reconstructed by `bload()` from the `bsave()`’ed object in the file. The latter is much more efficient with respect to both time and space.

- It may happen that the variable ordering at reading is changes from that at writing. In such a case, the variable ordering in the internal expression is automatically rearranged according to the current variable ordering.

- On Windows one has to use ‘/’ as the separator of directory names.

```plaintext
[0] A=(x+y+z+u+v+w)\20$
[1] bsave(A,"afo")
1
[2] B = bload("afo")$
1
[4] x=(x+y)\2;
x^2+2*y+x+y^2
[5] bsave(x,"afo")$
[6] quit;
% asir
[0] ord([y,x])$
[1] bload("afo")
y^2+2*x*y+x^2
```

References
Section 6.11.4 [output], page 75.

### 6.11.6 `bload27`  

`bload27("filename")`

:: Reads bsaved file created by older version of **Asir**.

return expression read

**filename**  

- In older versions an arbitrary precision integer is represented as an array of 27bit integers. In the current version it is represented as an array of 32bit integers. By this incompatibility the bsaved file created by older versions cannot be read in the current version by `bload`. `bload27` is used to read such files.

- On Windows one has to use ‘/’ as the separator of directory names.

References
Section 6.11.5 [bsave bload], page 75.
6.11.7 print

print(obj [,nl])
   :: Displays (or outputs) obj.
return 0
obj arbitrary
nl flag (arbitrary)
   • Displays (or outputs) obj.
   • It normally adds linefeed code to cause the cursor moving to the next line. If 0 or 2 is
given as the second argument, it does not add a linefeed. If the second argument is 0,
the output is simply written in the buffer. If the second argument is 2, the output is
flushed.
   • The return value of this function is 0. If command print(rat); is performed at the
top level, first the value of rat will be printed, followed by a linefeed, followed by a 0
which is the value of the function and followed by a linefeed and the next prompt. (If
the command is terminated by a ‘$’, e.g., print(rat)$, The last 0 will not be printed.
)
   • Formatted outputs are not currently supported. If one wishes to output multiple objects
by a single print() command, use list like [obj1,...], which is not so beautiful, but
convenient to minimize programming efforts.
   [8] def cat(L) { while ( L != [] ) { print(car(L),0); L = cdr(L);} print(""); }
   [9] cat([xyz,123,"gahahaha"])$
   xyz123gahahaha

6.11.8 open_file, close_file, get_line, get_byte, put_byte, purge_
stdin

open_file("filename" [,"mode"])
   :: Opens filename for reading.
close_file(num)
   :: Closes the file indicated by a descriptor num.
get_line([num])
   :: Reads a line from the file indicated by a descriptor num.
get_byte(num)
   :: Reads a byte from the file indicated by a descriptor num.
put_byte(num)
   :: Writes a byte to the file indicated by a descriptor num.
purge_stdio()
purge_stdio()
   :: Clears the buffer for the standard input.
return open_file() : integer (fild id); close_file() : 1; get_line() : string; get_
byte(), put_byte() : integer
filename    file (path) name
mode        string
num         non-negative integer (file descriptor)

- **open_file()** opens a file. If **mode** is not specified, a file is opened for reading. If **mode** is specified, it is used as the mode specification for C standard I/O function **fopen()**. For example "w" requests that the file is truncated to zero length or created for writing. "a" requests that the file is opened for writing or created if it does not exist. The stream pointer is set at the end of the file. If successful, it returns a non-negative integer as the file descriptor. Otherwise the system error function is called. Unnecessary files should be closed by **close_file()**.

- **get_line()** reads a line from an opened file and returns the line as a string. If no argument is supplied, it reads a line from the standard input.

- **get_byte()** reads a byte from an opened file and returns the byte as an integer.

- **put_byte()** writes a byte from an opened file and returns the byte as an integer.

- A **get_line()** call after reading the end of file returns an integer 0.

- Strings can be converted into internal forms with string manipulation functions such as **sub_str()**, **eval_str()**.

- **purge_stdin()** clears the buffer for the standard input. When a function receives a character string from **get_line()**, this functions should be called in advance in order to avoid an incorrect behavior which is caused by the characters already exists in the buffer.

```plaintext
[185] Id = open_file("test");
0
[186] get_line(Id);
12345

[187] get_line(Id);
67890

[188] get_line(Id);
0
[189] type(00);
0
[190] close_file(Id);
1
[191] open_file("test");
1
[192] get_line(1);
12345

[193] get_byte(1);
54 /* the ASCII code of '6' */
[194] get_line(1); /* the rest of the last line */
7890
[195] def test() { return get_line(); }
[196] def test1() { purge_stdin(); return get_line(); }
```
[197] test();                        /* a remaining newline character has been read */
   /* returns immediately */
[198] test1();
  123;                             /* input from a keyboard */
  123;                             /* returned value */

References
  Section 6.10.3 [eval_str], page 71, Section 6.10.5 [str_len str_chr sub_str], page 72.

6.12 Miscellaneous

6.12.1 ctrl

ctrl("switch", obj)
  :: Sets the value of switch.
return  value of switch
switch  switch name
obj     parameter

- This function is used to set or to get the values of switches. The switches are used to control an execution of Asir.
- If obj is not specified, the value of switch is returned.
- If obj is specified, the value of switch is set to obj.
- Switches are specified by strings, namely, enclosed by two double quotes.
- Here are of switches of Asir.

  cputime  If ‘on’, CPU time and GC time is displayed at every top level evaluation of Asir command; if ‘off’, not displayed. See Section 6.12.6 [cputime tstart tstop], page 83. (The switch is also set by command cputime(1), and reset by cputime(0)).
  nez     Selection for EZGCD algorithm. It is set to 1 by default. Ordinary users need not change this setting.
  echo    If ‘on’, inputs from the standard input will be echoed onto the standard output. When executing to load a file, the contents of the file will be written onto the standard output. If ‘off’, the inputs will not be echoed. This command will be useful when used with command output.
  bigfloat If ‘on’, floating operations will be done by PARI system with arbitrary precision floating point operations. Default precision is set to 9 digits. To change the precision, use command setprec. If ‘off’, floating operations will be done by Asir’s own floating operation routines with a fixed precision operations of standard floating double.
adj
Sets the frequency of garbage collection. A rational number greater than or
equal to 1 can be specified. The default value is 3. If a value closer to 1 is
specified, larger heap is allocated and as a result, the frequency of garbage
collection decreases. See Section 2.4 [Command line options], page 5.

verbose
If ‘on’ a warning messages is displayed when a function is redefined.

hex
If 1 is set, integers are displayed as hexadecimal numbers with prefix 0x.
if -1 is set, hexadecimal numbers are displayed with ‘!’ inserted at every
8 hexadecimal digits.

fortran_output
If ‘on’ polynomials are displayed in FORTRAN style. That is, a power is
represented by ‘**’ instead of ‘^’. The default value is ‘off’.

ox_batch
If ‘on’, the OpenXM send buffer is flushed only when the buffer is full. If
‘off’, the buffer is always flushed at each sending of data or command. The
default value is ‘off’. See Chapter 7 [Distributed computation], page 89

ox_check
If ‘on’ the check by mathcap is done before sending data. The default value
is ‘on’. See Chapter 7 [Distributed computation], page 89

ox_exchange_mathcap
If ‘on’ Asir forces the exchange of mathcaps at the communication startup.
The default value is ‘on’. See Chapter 7 [Distributed computation], page 89

References
Section 6.12.6 [cputime tstart tstop], page 83, Section 6.11.4 [output],
page 75, Section 6.1.13 [pari], page 37, Section 6.1.14 [setprec], page 38,
Section 6.1.12 [eval deval], page 36.

6.12.2 debug

ddebug :: Forces to enter into debugging mode.

Function debug is a function with no argument. It can be called without ‘()’.
• In the debug-mode, you are prompted by (debug) and the debugger is ready for com-
mands. Typing in quit (Note! without a semicolon.) brings you to exit the debug-
mode.
• See Chapter 5 [Debugger], page 27 for details.
  [1] debug;
  (debug) quit
  0
  [2]

6.12.3 error

ererror(message)
:: Forces Asir to cause an error and enter debugging mode.

message :: string
• When Asir encounters a serious error such that it finds difficult to continue execution, it, in general, tries to enter debugging mode before it returns to top level. The command error() forces a similar behavior in a user program.

• The argument is a string which will be displayed when error() will be executed.

• You can enter the debug-mode when your program encounters an illegal value for a program variable, if you have written the program so as to call error() upon finding such an error in your program text.

% cat mod3
def mod3(A) {
  if ( type(A) <= 2 )
    error("invalid argument");
  else
    return A % 3;
}
end$
% asir
[0] load("mod3");
1
[3] mod3(5);
2
[4] mod3(x);
invalid argument
stopped in mod3 at line 3 in file "./mod3"
 3  error("invalid argument");
(debug) print A
A = x
(debug) quit
return to toplevel
[4]

References
Section 6.12.2 [debug], page 80.

6.12.4 help

help(['"function"'])
:: Displays the description of function function.

return  0

function function name

• If invoked without argument, it displays rough usage of Asir.

• If a function name is given and if there exists a file with the same name in the directory ‘help’ under standard library directory, the file is displayed by a command set to the environmental variable PAGER or else command ‘more’.

• If the LANG environment variable is set and its value begins with "japan" or "ja_JP", then the file in ‘help-jp’ is displayed. If its value does not begin with "japan" or "ja_JP", then the file in ‘help-eg’ is displayed.

• On Windows HTML-style help is available from the menu.
6.12.5 time

\texttt{time()} :: Returns a four element list consisting of total CPU time, GC time, the elapsed time and also total memory quantities requested from the start of current Asir session.

\textbf{return} \quad \textbf{list}

- These are commands regarding CPU time and GC time.
- The GC time is the time regarded to spent by the garbage collector, and the CPU time is the time defined by subtracting the GC time from the total time consumed by command \texttt{Asir}. Their unit is ‘second.’
- Command \texttt{time()} returns total CPU time and GC time measured from the start of current Asir session. It also returns the elapsed time. Time unit is ‘second.’ Moreover, it returns total memory quantities in words (usually 4 bytes) which are requested to the memory manager from the beginning of the current session. The return value is a list and the format is [CPU time, GC time, Memory, Elapsed time].
- You can find the CPU time and GC time for some computation by taking the difference of the figure reported by \texttt{time()} at the beginning and the ending of the computation.
- Since arbitrary precision integers are NOT used for counting the total amount of memory request, the number will eventually happen to become meaningless due to integer overflow.
- When \texttt{cputime} switch is active by \texttt{ctrl()} or by \texttt{cputime()}, the execution time will be displayed after every evaluation of top level statement. In a program, however, in order to know the execution time for a sequence of computations, you have to use \texttt{time()} command, for an example.
- On UNIX, if \texttt{getrusage()} is available, \texttt{time()} reports reliable figures. On Windows NT it also gives reliable CPU time. However, on Windows 95/98, the reported time is nothing but the elapsed time of the real world. Therefore, the time elapsed in the debug-mode and the time of waiting for a reply to interruption prompting are added to the elapsed time.

\begin{verbatim}
[72] T0=time();
[2.390885,0.464358,46560.9.157768]
[73] G=hr(katsura(4),[u4,u3,u2,u1,u0],2)$
[74] T1=time();
[8.468048,7.705907,1514833,63.359717]
[75] "["CPU",T1[0]-T0[0],"GC",T1[1]-T0[1]];
[CPU,6.577163,GC,7.221549]
\end{verbatim}

References
Section 6.12.6 [cputime tstart tstop], page 83.

6.12.6 cputime, tstart, tstop

cputime(onoff) :: Stop displaying \texttt{cputime} if its argument is 0, otherwise start displaying \texttt{cputime} after every top level evaluation of Asir command.
tstart() :: Resets and starts timer for CPU time and GC time.

tstop() :: Stops timer and then displays CPU time GC time elapsed from the last time when timer was started.

return 0

onoff flag (arbitrary)

- Command cputime() with NON-ZERO argument enables Asir to display CPU time and GC time after every evaluation of top level Asir command. The command with argument 0 disables displaying them.
- Command tstart() starts measuring CPU time and GC time without arguments. The parentheses (') may be omitted.
- Command tstop() stops measuring CPU time and GC time and displays them without arguments. The parentheses (') may be omitted.
- Command cputime(onoff) has same meaning as ctrl("cputime",onoff).
- Nested use of tstart() and tstop() is not expected. If such an effect is desired, use time().
- On and off states by cputime() have effects only to displaying mode. Time for evaluation of every top level statement is always measured. Therefore, even after a computation has already started, you can let Asir display the timings, whenever you enter the debug-mode and execute cputime(1).

[49] tstart$
[50] fctr(x^10-y^10);
[[1,1],[x+y,1],[x^4-y*x^3+y^2*x^2-y^3*x+y^4,1],[x-y,1],
[x^4+y*x^3+y^2*x^2+y^3*x+y^4,1]]
[51] tstop$
80msec + gc : 40msec

References
Section 6.12.5 [time], page 82, Section 6.12.1 [ctrl], page 79.

6.12.7 timer

timer(interval, expr, val)
:: Compute an expression under the interval timer.

return result

interval interval (second)

expr expression to be computed

val a value to be returned when the timer is expired

- timer() computes an expression under the interval timer. If the computation finishes within the specified interval, it returns the result of the computation. Otherwise it returns the third argument.
- The third argument should be distinguishable from the result on success.
6.12.8 heap

heap() :: Heap area size currently in use.
return non-negative integer

- Command `heap()` returns an integer which is the byte size of current `Asir` heap area. Heap is a memory area where various data for expressions and user programs of `Asir` and is managed by the garbage collector. While `Asir` is running, size of the heap is monotonously non-decreasing against the time elapsed. If it happens to exceed the real memory size, most (real world) time is consumed for swapping between real memory and disk memory.

- For a platform with little real memory, it is recommended to set up `Asir` configuration tuned for GC functions by `-adj` option at the activation of `Asir`. (See Section 2.4 [Command line options], page 5.)

```asir
% asir -adj 16
[0] load("fctrdta")$
0
[97] cputime(1)$
0msec
[98] heap();
524288 Omsec
[99] fctrdta(Wang[8])$
3.190sec + gc : 3.420sec
[100] heap();
1118208 Omsec
[101] quit;
% asir
[0] load("fctrdta")$
0
[97] cputime(1)$
0msec
[98] heap();
827392 Omsec
[99] fctrdta(Wang[8])$
3.000sec + gc : 1.180sec
[100] heap();
1626112 Omsec
[101] quit;
```
References
Section 2.4 [Command line options], page 5.

6.12.9 version

version()
:: Version identification number of Asir.
return integer

Command version() returns the version identification number, an integer of Asir in use.
[0] version();
991214

6.12.10 shell

shell(command)
:: Execute shell commands described by a string command.
return integer
command string

Execute shell commands described by a string command by a C function system(). This returns the exit status of shell as its return value.
[0] shell("ls");
alg    da    katsura    ralg    suit
alglt   defsh    kimura    ratint    test
alpi    edet    kimura3    robot    texput.log
asir.o   fee    mfee    sasa    wang
asir_symtab    gr    mksym    shira    wang_data
base    gr.h    mp    snf1    wt
bgk    help    msubst    solve
chou    hom    p    sp
const    ifplot    proot    strum
cyclic    is    r    sugar
0
[1]

6.12.11 map

map(function,arg0,arg1,...)
:: Applies a function to each member of a list or an array.
return an object of the same type as arg0.
function the name of a function
arg0 list, vector or matrix
arg1,... arbitrary (the rest of arguments)
• Returns an object of the same type as *arg0*. Each member of the returned object is the return value of a function call where the first argument is the member of *arg0* corresponding to the member in the returned object and the rest of the argument are *arg1*, ...

• *function* is a function name itself without ‘n’.

• A program variable cannot be used as *function*.

• If *arg0* is neither list nor array this function simply returns the value of *function(arg0,arg1,...)*.

[82] def afo(x) { return x**3; }
[83] map(afo,[1,2,3]);
[1,8,27]

6.12.12 flist

flist() :: Returns the list of function names currently defined.

*return* list of character strings

- Returns the list of names of built-in functions and user defined functions currently defined. The return value is a list of character strings.

- The names of built-in functions are followed by those of user defined functions.

[77] flist();
[defpoly,newalg,mainalg,algtorat,rattoalg,getalg,alg,algv,...]

6.12.13 delete_history

delete_history([*index]*)

:: Deletes the history.

*return* 0

*index* Index of history to be deleted.

- Deletes all the histories without an argument.

- Deletes the history with index *index* if specified.

- A history is an expression which has been obtained by evaluating an input given for a prompt with an index. It can be taken out by @*index*, which means that the expression survives garbage collections.

- A large history may do harm in the subsequent memory management and deleting the history by delete_history(), after saving it in a file by bsave(), is often effective.

[0] (x+y+z)**-100$
[1] @0;
...
[2] delete_history(0);
[3] @0;
0
6.12.14 get_rootdir
get_rootdir()
:: Gets the name of Asir root directory.

return  string
- On UNIX it returns the value of an environment variable ASIR_LIBDIR or
  '/usr/local/lib/asir' if ASIR_LIBDIR is not set.
- On Windows the name of Asir root directory is returned.
- By using relative path names from the value of this function, one can write programs
  which contain file operations independent of the install directory.

6.12.15 getopt
getopt(key)
:: Returns the value of an option.

return  object
- When a user defined function is called, the number of arguments must be equal to that
  in the declaration of the function. A function with indefinite number of arguments
  can be realized by using options (see Section 4.2.12 [option], page 26). The value of a
  specified option is retrieved by getopt.
- If an option key is specified upon a function call, getopt return the value of the option.
  If such an option is not specified, the it returns an object of VOID type whose object
  identifier is -1. By examining the type of the returned value with type(), one knows
  whether the option is set or not.
- Options are specified as follows:
  xxx(A,B,C,D|x=X,y=Y,z=Z)
  That is, the options are specified by a sequence of key=value seperated by ',', after
  '|'.

References
Section 4.2.12 [option], page 26, Section 6.8.1 [type], page 68.

6.12.16 getenv
getenv(name)
:: Returns the value of an environment variable.

return
name  string
- Returns the value of an environment variable name.
  [0] getenv("HOME");
  /home/pocrf/noro
7 Distributed computation

7.1 OpenXM

On Asir distributed computations are done under OpenXM (Open message eXchange protocol for Mathematics), which is a protocol for exchanging mainly mathematical objects between processes. In OpenXM a distributed computation is done as follows:

1. A client requests something to a server.
2. The server does works according to the request.
3. The client requests to send data to the server.
4. The server sends the data to the client and the client gets the data.

The server is a stack machine. That is data objects sent by the client are pushed to the stack of the server. If the server gets a command, then the data are popped from the stack and they are used as arguments of a function call.

In OpenXM, the result of a computation done in the server is simply pushed to the stack and the data is not written to the communication stream without requests from the client.

OpenXM protocol consists of two components: CMO (Common Mathematical Object format) which determines a common format of data representations and SM (StackMachine command) which specifies actions on servers. These are wrapped as OX expressions to indicate the sort of data when they are sent.

To execute a distributed computation by OpenXM, one has to invoke OpenXM servers and to establish communications between the client and the servers. ox_launch(), ox_launch_nox(), ox_launch_generic() are prepared for such purposes. Furthermore the following functions are available.

ox_push_cmo()
It requests a server to push an object to the stack of a server.

ox_pop_cmo()
It requests a server to pop an object from the stack of a server.

ox_cmo_rpc()
It requests to execute a function on a server. The result is pushed to the stack of the server.

ox_execute_string()
It requests a server to parse and execute a string by the parser and the evaluator of the server. The result is pushed to the stack of the server.

ox_push_cmd()
It requests a server to execute a command.

ox_get()
It gets an object from a data stream.
7.2 Mathcap

A server or a client does not necessarily implement full specifications of OpenXM. If a program sends data unknown to its peer, an unrecoverable error may occur. To avoid such a case OpenXM provides a scheme not to send data unknown to peers. It is realized by exchanging the list of supported CMO and SM. The list is called mathcap. Mathcap is also defined as a CMO and the elements are 32bit integers or strings. The format of mathcap is as follows:

[[version number, server name],SMtaglist, [[OXtag,CMOtaglist],[OXtag,CMOtaglist],...]]

[OXtag,CMOtaglist] indicates that available object tags for a category of data specified by OXtag. For example ‘ox_asir’ accepts the local object format used by Asir and the mathcap from ‘ox_asir’ reflects the fact.

If "ox_check" switch of ctrl is set to 1, the check by a mathcap is done before data is sent. If "ox_check" switch of ctrl is set to 0, the check is not done. By default it is set to 1.

7.3 Stackmachine commands

The stackmachine commands are provided to request a server to execute various operations. They are automatically sent by built-in functions of Asir, but one often has to send them manually. They are represented by 32bit integers. One can send them by calling ox_push_cmd(). Typical stackmachine commands are as follows. SM_xxx=yyy means that SM_xxx is a mnemonic and that yyy is its value.

SM_popSerializedLocalObject=258
An object not necessarily defined as CMO is popped from the stack and is sent to the client. This is available only on ‘ox_asir’.

SM_popCMO=262
A CMO object is popped from the stack and is sent to the client.

SM_popString=263
An object is popped from the stack and is sent to the client as a readable string.

SM_mathcap=264
The server’s mathcap is pushed to the stack.

SM_pops=265
Objects are removed from the stack. The number of object to be removed is specified by the object at the top of the stack.

SM_setName=266
A variable name is popped form the stack. Then an object is popped and it is assigned to the variable. This assignment is done by the local language of the server.

SM_evalName=267
A variable name is popped from the stack. Then the value of the variable is pushed to the stack.
SM_executeStringByLocalParser=268
A string popped from the stack is parsed and evaluated. The result is pushed to the stack.

SM_executeFunction=269
A function name, the number of arguments and the arguments are popped from the stack. Then the function is executed and the result is pushed to the stack.

SM_beginBlock=270
It indicates the beginning of a block.

SM_endBlock=271
It indicates the end of a block.

SM_shutdown=272
It shuts down communications and terminates servers.

SM_setMathcap=273
It requests a server to register the data at the top of the stack as the client’s mathcap.

SM_getsp=275
The number of objects in the current stack is pushed to the stack.

SM_dupErrors=276
The list of all the error objects in the current stack is pushed to the stack.

SM_nop=300
Nothing is done.

7.4 Debugging
In general, it is difficult to debug distributed computations. ‘ox_asir’ provides several functions for debugging.

7.4.1 Error object
When an error has occurred on an OpenXM server, an error object is pushed to the stack instead of a result of the computation. The error object consists of the serial number of the SM command which caused the error, and an error message.

```
[340] ox_launch();
0
[341] oxRpc(0,"fctr",1.2*x);
0
[342] ox_pop_cmo(0);
error([8,fctrp : invalid argument])
```

7.4.2 Resetting a server
ox_reset() resets a process whose identifier is number. After its execution the process is ready for receiving data. This function corresponds to the keyboard interrupt on an usual Asir session. It often happens that a request of a client does not correspond correctly to the
result from a server. It is caused by remaining data on data streams. \texttt{ox\_reset} is effective for such cases.

### 7.4.3 Pop-up command window for debugging

As a server does not have any standard input device such as a keyboard, it is difficult to debug user programs running on the server. \texttt{ox\_asir} pops up a small command window to input debug commands when an error has occurred during user a program execution or \texttt{ox\_rpc(id,"debug")} has been executed. The responses to commands are shown in \texttt{xterm} to display standard outputs from the server. To close the small window, input \texttt{quit}.

### 7.5 Functions for distributed computation

#### 7.5.1 \texttt{ox\_launch}, \texttt{ox\_launch\_nox}, \texttt{ox\_shutdown}

\begin{verbatim}
\texttt{ox\_launch([host[,dir],command])}
\texttt{ox\_launch\_nox([host[,dir],command])}
\end{verbatim}

\begin{verbatim}
:: Initialize OpenXM servers.
\end{verbatim}

\begin{verbatim}
\texttt{ox\_shutdown(id)}
\end{verbatim}

\begin{verbatim}
:: Terminates OpenXM servers.
\end{verbatim}

\begin{verbatim}
return integer
host string or 0
\end{verbatim}

\begin{verbatim}
dir, command
string
\end{verbatim}

\begin{verbatim}
id integer
\end{verbatim}

- Function \texttt{ox\_launch()} invokes a process to execute \texttt{command} on a host \texttt{host} and enables \texttt{Asir} to communicate with that process. If the number of arguments is 3, \texttt{ox\_launch} in \texttt{dir} is invoked on \texttt{host}. Then \texttt{ox\_launch} invokes \texttt{command}. If \texttt{host} is equal to 0, all the commands are invoked on the same machine as the \texttt{Asir} is running. If no arguments are specified, \texttt{host}, \texttt{dir} and \texttt{command} are regarded as 0, the value of \texttt{get\_rootdir()} and \texttt{ox\_asir} in the same directory respectively.
- If \texttt{host} is equal to 0, then \texttt{dir} can be omitted. In such a case \texttt{dir} is regarded as the value of \texttt{get\_rootdir()}.
- If \texttt{command} begins with ‘/’, it is regarded as an absolute pathname. Otherwise it is regarded as a relative pathname from \texttt{dir}.
- On UNIX, \texttt{ox\_launch()} invokes \texttt{xterm} to display standard outputs from \texttt{command}. If \texttt{X11} is not available or one wants to invoke servers without \texttt{xterm}, use \texttt{ox\_launch\_nox()}, where the outputs of \texttt{command} are redirected to ‘/dev/null’. If the environment variable \texttt{DISPLAY} is not set, \texttt{ox\_launch()} and \texttt{ox\_launch\_nox()} behave identically.
- The returned value is used as the identifier for communication.
• The peers communicating with Asir are not necessarily processes running on the same
machine. The communication will be successful even if the byte order is different from
those of the peer processes, because the byte order for the communication is determined
by a negotiation between a client and a server.

• The following preparations are necessary. Here, Let A be the host on which Asir is
running, and B the host on which the peer process will run.

1. Register the hostname of the host A to the ‘/ .rhosts’ of the host B. That is, you
should be allowed to access the host B from A without supplying a password.

2. For cases where connection to x is also used, let xserver authorize the relevant
hosts. Adding the hosts can be done by command xhost.

3. If an environment variable ASIR_RSH is set, the content of this variable is used as
a program to invoke remote servers instead of rsh. For example,

    "setenv ASIR_RSH "ssh -f \x -A ""

implies that remote servers are invoked by ‘ssh’ and that X11 forwarding is en-
abled. See the manual of ‘ssh’ for the detail.

4. Some command’s consume much stack space. You are recommended to set the
stack size to about 16MB large in ‘.cshrc’ for safe. To specify the size, put limit
stacksize 16m for an example.

• When command opens a window on x, it uses the string specified for display; if the
specification is omitted, it uses the value set for the environment variable DISPLAY.

• ox_shutdown() terminates OpenXM servers whose identifier is id.

• When Asir is terminated successfully, all I/O streams are automatically closed, and all
the processes invoked are also terminated. However, some remote processes may not
terminated when Asir is terminated abnormally. If ever Asir is terminated abnormally,
you have to kill all the unterminated process invoked by Asir on every remote host.
Check by ps command on the remote hosts to see if such processed are alive.

• ‘xterm’ for displaying the outputs from command is invoked with ‘-name ox_term’ op-
tion. Thus, by specifying resources for the resource name ‘ox_term’, only the behaviour
of the ‘xterm’ can be customized.

    /* iconify on start */
    ox_xterm*iconic: on
    /* activate the scroll bar */
    ox_xterm*scrollBar: on
    /* 1000 lines can be shown by the scrollbar */
    ox_xterm*saveLines: 1000

[219] ox_launch();
0
[220] ox_rpc(0,"fctr",x^-10-y^-10);
0
[221] ox_pop_local(0);
[[[1, 1], [x^4+y*x^3+y^2*x^2+y^3*x+y^4, 1],
 [x^4-y*x^3+y^2*x^2-y^3*x+y^4, 1], [x-y, 1], [x+y, 1]]
[222] ox_shutdown(0);
0
References
Section 7.5.5 [ox_rpc ox_cmo_rpc ox_execute_string], page 96, Section 7.5.8
[ox_pop_cmo ox_pop_local], page 99, Section 7.5.15 [ifplot conplot plot
plotover], page 103

7.5.2 ox_launch_generic

ox_launch_generic(host, launch, server, use_unix, use_ssh, use_x, conn_to_serv)
:: Initialize OpenXM servers.
return integer
host string or 0
launcher, server
string
use_unix, use_ssh, use_x, conn_to_serv
integer

- ox_launch_generic() invokes a control process launch and a server process server on
  host. The other arguments are switches for protocol family selection, on/off of the X
  environment, method of process invocation and selection of connection type.
- If host is equal to 0, processes are invoked on the same machine as the Asir is running.
  In this case UNIX internal protocol is always used.
- If use_unix is equal to 1, UNIX internal protocol is used. If use_unix is equal to 0,
  Internet protocol is used.
- If use_ssh is equal to 1, 'ssh' (Secure Shell) is used to invoke processes. If one does
  not use 'ssh-agent', a password (passphrase) is required. If 'sshd' is not running on
  the target machine, 'rsh' is used instead. But it will immediately fail if a password is
  required.
- If use_x is equal to 1, it is assumed that X environment is available. In such a case
  server is invoked under 'xterm' by using the current DISPLAY variable. If DISPLAY is
  not set, it is invoked without X. Note that the processes will hang up if DISPLAY is
  incorrectly set.
- If conn_to_serv is equal to 1, Asir (client) executes bind and listen, and the invoked
  processes execute connect. If conn_to_serv is equal to 0, Asir (client) the invoked
  processes execute bind and listen, and the client executes connect.

[342] LIB=get_rootdir();
/export/home/noro/ca/Kobe/build/OpenXM/lib/asir
[343] ox_launch_generic(0,LIB+"/ox_launch",LIB+"/ox_asir",0,0,0,0);
  1
[344] ox_launch_generic(0,LIB+"/ox_launch",LIB+"/ox_asir",1,0,0,0);
  2
[345] ox_launch_generic(0,LIB+"/ox_launch",LIB+"/ox_asir",1,1,0,0);
  3
[346] ox_launch_generic(0,LIB+"/ox_launch",LIB+"/ox_asir",1,1,1,0);
  4
[347] ox_launch_generic(0,LIB+"/ox_launch",LIB+"/ox_asir",1,1,1,1);
5  [348] ox_launch_generic(0,LIB+"/ox_launch",LIB+"/ox_asir",1,1,0,1);
6

References
Section 7.5.1 [ox_launch ox_launch_nox ox_shutdown], page 92, Section 7.5.2
[ox_launch_generic], page 94

7.5.3 generate_port, try_bind_listen, try_connect, try_accept,
register_server

generate_port([use_unix])
  :: Generates a port number.

try_bind_listen(port)
  :: Binds and listens on a port.

try_connect(host,port)
  :: Connects to a port.

try_accept(socket,port)
  :: Accepts a connection request.

register_server(control_socket,control_port,server_socket,server_port)
  :: Registers the sockets for which connections are established.

return integer or string for generate_port(), integer for the others

use_unix 0 or 1

host string

port,control_port,server_port
  integer or string

socket,control_socket,server_socket
  integer

• These functions are primitives to establish communications between a client and servers.

• generate_port() generates a port name for communication. If the argument is not
  specified or equal to 0, a port number for Internet domain socket is generated randomly.
  Otherwise a file name for UNIX domain (host-internal protocol) is generated. Note that
  it is not assured that the generated port is not in use.

• try_bind_listen() creates a socket according to the protocol family indicated by the
  given port and executes bind and listen. It returns a socket identifier if it is successful.
  -1 indicates an error.

• try_connect() tries to connect to a port port on a host host. It returns a socket
  identifier if it is successful. -1 indicates an error.

• try_accept() accepts a connection request to a socket socket. It returns a new socket
  identifier if it is successful. -1 indicates an error. In any case socket is automatically
  closed. port is specified to distinguish the protocol family of socket.

• register_server() registers a pair of a control socket and a server socket. A process
  identifier indicating the pair is returned. The process identifier is used as an argument
  of ox functions such as ox_push_cmo().
• Servers are invoked by using `shell()`, or manually.
  
  [340] CPort=generate_port();
  39896
  [341] SPort=generate_port();
  37222
  [342] CSocket=try_bind_listen(CPort);
  3
  [343] SSocket=try_bind_listen(SPort);
  5

  /*
   ox_launch is invoked here :
   % ox_launch "127.1" 0 39716 37043 ox_asir "shio:0"
   */
  
  [344] CSocket=try_accept(CSocket,CPort);
  6
  [345] SSocket=try_accept(SSocket,SPort);
  3
  [346] register_server(CSocket,CPort,SSocket,SPort);
  0

References

Section 7.5.1 [ox_launch ox_launch_nox ox_shutdown], page 92, Section 7.5.2
[ox_launch_generic], page 94, Section 6.12.10 [shell], page 85, Section 7.5.7
[ox_push_cmo ox_push_local], page 98

7.5.4 ‘ox_asir’

‘ox_asir’ provides almost all the functionalities of Asir as an OpenXM server. ‘ox_asir’
is invoked by ox_launch or ox_launch_nox. If X environment is not available or is not
necessary, one can use ox_launch_nox.

  [5] ox_launch();
  0

  [5] ox_launch_nox("127.0.0.1","/usr/local/lib/asir","/usr/local/lib/asir/ox_asir");
  0

  [7] RemoteLibDir = "/usr/local/lib/asir/"$

  [8] Machines = ["sumire","rokkaku","genkotsu","shinpuku" ];
  [sumire,rokkaku,genkotsu,shinpuku]

  [9] Servers = map(ox_launch,Machines,RemoteLibDir,RemoteLibDir+"ox_asir");
  [0,1,2,3]

References

Section 7.5.1 [ox_launch ox_launch_nox ox_shutdown], page 92

7.5.5 ox_rpc, ox_cmo_rpc, ox_execute_string
ox_rpc(number,"func",arg0,...)
ox_cmo_rpc(number,"func",arg0,...)
ox_execute_string(number,"command",...)
  :: Calls a function on an OpenXM server
return 0
number integer (process identifier)
func function name
command string
arg0, arg1,...
  arbitrary (arguments)
- Calls a function on an OpenXM server whose identifier is number.
- It returns 0 immediately. It does not wait the termination of the function call.
- ox_rpc() can be used when the server is ‘ox_asir’. Otherwise ox_cmo_rpc() should be used.
- The result of the function call is put on the stack of the server. It can be received by
  ox_pop_local() or ox_pop_cmo().
- If the server is not ‘ox_asir’, only data defined in OpenXM can be sent.
- ox_execute_string requests the server to parse and execute command by the parser
  and the evaluator of the server. The result is pushed to the stack.

  [234] ox_cmo_rpc(0,"dp_ht",dp_ptod((x+y)^10,[x,y]));
  0
  [235] ox_pop_cmo(0);
(1)<<<10,0>>>
  [236] ox_execute_string(0,"12345 % 678;");
  0
  [237] ox_pop_cmo(0);
141

References
  Section 7.5.8 [ox_pop_cmo ox_pop_local], page 99

7.5.6 ox_reset, ox_intr, register_handler

ox_reset(number)
  :: Resets an OpenXM server
ox_intr(number)
  :: Sends SIGINT to an OpenXM server
register_handler(func)
  :: Registers a function callable on a keyboard interrupt.
return 1
number integer (process identifier)
func functor or 0
• ox_reset() resets a process whose identifier is number. After its execution the process is ready for receiving data.
• After executing ox_reset(), sending/receiving buffers and stream buffers are assured to be empty.
• Even if a process is running, the execution is safely stopped.
• ox_reset() may be used prior to a distributed computation. It can be also used to interrupt a distributed computation.
• ox_intr() sends SIGINT to a process whose identifier is number. The action of a server against SIGINT is not specified in OpenXM. ox_asir' immediately enters the debug mode and pops up an window to input debug commands on X window system.
• register_handler() registers a function func(). If u is specified on a keyboard interrupt, func() is executed before returning toplevel. If ox_reset() calls are included in func(), one can automatically reset OpenXM servers on a keyboard interrupt.
• If func is equal to 0, the setting is reset.

    [10] ox_launch();
    0
    [11] ox_rpc(0,"fctr",x^100-y^100);
    0
    [12] ox_reset(0); /* usrl : return to toplevel by SIGUSR1 */
        1     /* is displayed on the xterm. */
    [340] Procs=[ox_launch(),ox_launch()];
    [0,1]
    [341] def reset() { extern Procs; map(ox_reset,Procs);}
    [342] map(ox_rpc,Procs,"fctr",x^100-y^100);
    [0,0]
    [343] register_handler(reset);
    1
    [344] interrupt ?(q/t/c/d/u/w/?) u
    Abort this computation? (y or n) y
    Calling the registered exception handler...done.
    return to toplevel

References
    Section 7.5.5 [ox_rpc ox_cmo_rpc ox_execute_string], page 96

7.5.7 ox_push_cmo, ox_push_local

ox_push_cmo(number, obj)
ox_push_local(number, obj)
    :: Sends obj to a process whose identifier is number.
return 0
number integer(process identifier)
ojb object
• Sends obj to a process whose identifier is number.
• ox_push_cmo is used to send data to an OpenXM other than 'ox_asir' and 'ox_plot'.
• `ox_push_local` is used to send data to `ox_asir` and `ox_plot`.
• The call immediately returns unless the stream buffer is full.

References
Section 7.5.5 [ox_rpc ox_cmo_rpc ox_execute_string], page 96, Section 7.5.8 [ox_pop_cmo ox_pop_local], page 99

7.5.8 ox_pop_cmo, ox_pop_local

`ox_pop_local(number)`
:: Receives data from a process whose identifier is `number`.

`return` received data

`number` integer (process identifier)
• Receives data from a process whose identifier is `number`.
• `ox_pop_cmo` can be used to receive data form an OpenXM server other than `ox_asir` and `ox_plot`.
• `ox_pop_local` can be used to receive data from `ox_asir`, `ox_plot`.
• If no data is available, these functions block. To avoid it, send `SM_popCMO` (262) or `SM_popSerializedLocalObject` (258). Then check the process status by `ox_select`. Finally call `ox_get` for a ready process.

[3] `ox_rpc(0,"fctr",x^100-y^100);`
0
[4] `ox_push_cmd(0,258);`
0
[5] `ox_select([0]);`
[0]
[6] `ox_get(0);`
[[1,1],[x^2+y^2,1],[x^4-y*x^3+y^2*x^2-y^3*x+y^4,1],...]

References
Section 7.5.5 [ox_rpc ox_cmo_rpc ox_execute_string], page 96, Section 7.5.9 [ox_push_cmd ox_sync], page 99, Section 7.5.12 [ox_select], page 101, Section 7.5.10 [ox_get], page 100

7.5.9 ox_push_cmd, ox_sync

`ox_push_cmd(number,command)`
:: Sends a command `command` to a process whose identifier is `number`.

`ox_sync(number)`
:: Sends `OX_SYNC_BALL` to a process whose identifier is `number`.

`return` 0

`number` integer (process identifier)

`command` integer (command identifier)
• Sends a command or `OX_SYNC_BALL` to a process whose identifier is `number`.
• Data in **OpenXM** are categorized into three types: **OX_DATA**, **OX_COMMAND**, **OX_SYNC_BALL**. Usually **OX_COMMAND** and **OX_SYNC_BALL** are sent implicitly with high level operations, but these functions are prepared to send these data explicitly.
• **OX_SYNC_BALL** is used on the resetting operation by **ox_reset**. Usually **OX_SYNC_BALL** will be ignored by the peer.

**References**
Section 7.5.5 [ox_rpc ox_cmo_rpc ox_execute_string], page 96, Section 7.5.6 [ox_reset ox_intr register_handler], page 97

### 7.5.10 ox_get

**ox_get(number)**

:: Receives data form a process whose identifier is **number**.

**return**

**number** integer(process identifier)

• Receives data form a process whose identifier is **number**.
• One may use this function with **ox_push_cmd**.
• **ox_pop_cmo** and **ox_pop_local** is realized as combinations of **ox_push_cmd** and **ox_get**.

[11] ox_push_cmo(0,123);
0
[12] ox_push_cmd(0,262); /* 262=OX_popCMO */
0
[13] ox_get(0);
123

**References**
Section 7.5.8 [ox_pop_cmo ox_pop_local], page 99, Section 7.5.9 [ox_push_cmd ox_sync], page 99

### 7.5.11 ox_pops

**ox_pops(number[], nitem)**

:: Removes data form the stack of a process whose identifier is **number**.

**return** 0

**number** integer(process identifier)

**nitem** non-negative integer

• Removes data form the stack of a process whose identifier is **number**. If **nitem** is specified, **nitem** items are removed. If **nitem** is not specified, 1 item is removed.

[69] for(I=1;I<=10;I++)ox_push_cmo(0,I);
[70] ox_pops(0,4);
0
[71] ox_pop_cmo(0);
6
References

Section 7.5.8 [ox_pop_cmo ox_pop_local], page 99

7.5.12 ox_select

\[\text{ox\_select(nlist[,timeout])}\]

:: Returns the list of process identifiers on which data is available.

\[\text{return list}\]

\[\text{nlist list of integers (process identifier)}\]

\[\text{timeout number}\]

- Returns the list of process identifiers on which data is available.
- If all the processes in nlist are running, it blocks until one of the processes returns data. If timeout is specified, it waits for only timeout seconds.
- By sending \texttt{SM\_popCMO} or \texttt{SM\_popSerializedLocalObject} with \texttt{ox\_push\_cmd()} in advance and by examining the process status with \texttt{ox\_select()}, one can avoid a hanging up caused by \texttt{ox\_pop\_local()} or \texttt{ox\_pop\_cmo()}. In such a case, data can be received by \texttt{ox\_get()}.

\[\text{ox\_launch();}\]
\[0\]
\[\text{[220] ox\_launch();}\]
\[1\]
\[\text{[221] ox\_launch();}\]
\[2\]
\[\text{[222] ox\_rpc(2,"fctr",x^500-y^500);}\]
\[0\]
\[\text{[223] ox\_rpc(1,"fctr",x^100-y^100);}\]
\[0\]
\[\text{[224] ox\_rpc(0,"fctr",x^10-y^10);}\]
\[0\]
\[\text{[225] P=[0,1,2];}\]
\[0,1,2\]
\[\text{[226] map(ox\_push\_cmd,P,258);}\]
\[0,0,0\]
\[\text{[227] ox\_select(P);}\]
\[0\]
\[\text{[228] ox\_get(0);}\]
\[\text{[[1,1],[x^4+y*x^3+y^2*x^2+y^3*x*y^4,1],}\]
\[\text{[x^4-y*x^3+y^2*x^2-y^3*x+y^4,1],[x-y,1],[x+y,1]]}\]

References

Section 7.5.8 [ox_pop_cmo ox_pop_local], page 99, Section 7.5.9 [ox_push_cmd ox_sync], page 99, Section 7.5.10 [ox_get], page 100

7.5.13 ox_flush

\[\text{ox\_flush(id)}\]

:: Flushes the sending buffer.
return 1

id     process identifier

- By default the batch mode is off and the sending buffer is flushed at every sending
  operation of data and command.
- The batch mode is set by "ox_batch" switch of "ctrl".
- If one wants to send many pieces of small data, ctrl("ox_batch",1) may decrease
  the overhead of flush operations. Of course, one has to call ox_flush(id) at the end
  of the sending operations.
- Functions such as ox_pop_cmo and ox_pop_local enter a waiting mode immediately
  after sending a command. These functions always flush the sending buffer.

    [340] ox_launch_nox();
    0
    [341] cpu_time(1);
    0
    7e-05sec + gc : 4.8e-05sec(0.000119sec)
    [342] for(I=0;I<10000;I++)ox_push_cmo(0,I);
    0.232sec + gc : 0.006821sec(0.6878sec)
    [343] ctrl("ox_batch",1);
    1
    4.5e-05sec(3.302e-05sec)
    [344] for(I=0;I<10000;I++)ox_push_cmo(0,I); ox_flush();
    0.08063sec + gc : 0.06388sec(0.4408sec)
    [345] 1
    9.6e-05sec(0.01317sec)

References

    Section 7.5.8 [ox_pop_cmo ox_pop_local], page 99, Section 6.12.1 [ctrl],
    page 79

7.5.14 ox_get_serverinfo

    ox_get_serverinfo([id])
      :: Gets server's mathcap and process id.
    return     list
    id         process identifier

- If id is specified, the mathcap of the process whose identifier is id is returned.
- If id is not specified, the list of [id,Mathcap] is returned, where id is the identifier of
  a currently active process, and Mathcap is the mathcap of the process. identifier id is
  returned.

    [343] ox_get_serverinfo(0);
    [[199909080,0x_system=ox_sm1.plain,Version=2.991118,HOSTTYPE=FreeBSD],
     [262,263,264,265,266,268,269,272,273,275,276],
     [[514], [2130706434,1,2,4,5,17,19,20,22,23,24,25,26,30,31,60,61,27,33,40,16,34]]]
    [344] ox_get_serverinfo();
    [[0,[[199909080,0x_system=ox_sm1.plain,Version=2.991118,HOSTTYPE=FreeBSD],

[262,263,264,265,266,268,269,272,273,275,276],
[[514],[2130706434,1,2,4,5,17,19,20,22,23,24,25,26,30,31,60,61,27,33,40,16,34]]],
[1,[[199901160,ox_asir],
[276,275,258,262,263,266,267,268,274,269,272,265,264,273,300,270,271],
[[514,21444202544],
[1,2,3,4,5,2130706433,2130706434,17,19,20,21,22,24,25,26,31,27,33,60],[0,1]]]]

References
Section 7.2 [Mathcap], page 90.

7.5.15 ifplot, conplot, plot, plotover

ifplot(func [,geometry] [,xrange] [,yrange] [,id] [,name])
:: Displays real zeros of a bi-variate function.

conplot(func [,geometry] [,xrange] [,yrange] [,zrange] [,id] [,name])
:: Displays real contour lines of a bi-variate function.

plot(func [,geometry] [,xrange] [,id] [,name])
:: Displays the graph of a univariate function.

plotover(func,id,number)
Plots on the existing window real zeros of a bivariate function.

return integer
func polynomial
geometry, xrange, yrange, zrange
list
id, number
integer
name string

- Function ifplot() draws a graph of real zeros of a bi-variate function. Function conplot() plots the contour lines for a same argument. Function plot() draws the graph of a univariate function.
- The plotting functions are realized by an OpenXM server. On UNIX it is ‘ox_plot’ in Asir root directory. On Windows ‘engine’ acts as ‘ox_plot’. Of course, it must be activated by ox_launch() ox_launch_nox().
- Argument func is indispensible. Other arguments are optional. The format of optional arguments and their default values (parenthesized) are listed below.

geometry Window size is specified by [x,y] in unit ‘dot.’ ([300,300] for UNIX version;
xrange, yrange
Value ranges of the variables are specified by [v,vmin,vmax]. ([v,-2,2] for each variable.) If this specification is omitted, the indeterminate having the higher order in func is taken for ‘x’ and the one with lower order is taken for ‘y’. To change this selection, specify explicitly by xrange and/or yrange. For an uni-variate function, the specification is mandatory.
range  This specification applies only to conplot(). The format is \([v,vmin,vmax\ [,step \]]\). If \(step\) is specified, the height difference of contours is set to \((vmax-vmin)/step\). (\([z,2,16]\).)

id  This specifies the number of the remote process by which you wish to draw a graph. (The number for the newest active process.)

name  The name of the window. (Plot.) The created window is titled \(name:n/m\) which means the \(m\)-th window of the process with process number \(n\). These numbers are used for plotover().

- The maximum number of the windows that can be created on a process is 128.
- Function plotover() superposes reals zeros of its argument bi-variate function onto the specified window.
- Enlarged plot can be obtained for rectangular area which is specified, on an already existing window with a graph, by dragging cursor with the left button of mouse from the upper-left corner to lower-right corner and then releasing it. Then, a new window is created whose shape is similar to the specified area and whose size is determined so that the largest side of the new window has the same size of the largest side of the original window. If you wish to cancel the action, drag the cursor to any point above or left of the starting point.

This facility is effective when precise button switch is inactive. If precise is selected and active, the area specified by the cursor dragging will be rewritten on the same window. This will be explained later.

- A click of the right button will display the current coordinates of the cursor at the bottom area of the window.
- Place the cursor at any point in the right marker area on a window created by conplot(), and drag the cursor with the middle mutton. Then you will find the contour lines changing their colors depending on the movement of the cursor and the corresponding height level displayed on the upper right corner of the window.
- Several operations are available on the window: by button operations for UNIX version, and pull-down menus for Windows version.

quit  Destroys (kills) the window. While computing, quit the current computation. If one wants to interrupt the computation, use ox_reset().

wide (toggle)  Will display, on the same window, a new area enlarged by 10 times as large as the current area for both width-direction and height-direction. The current area will be indicated by a rectangle placed at the center. Area specification by dragging the cursor will create a new window with a plot of the graph in the specified area.

precise (toggle)  When selected and active, ox_plot redraws the specified area more precisely by integer arithmetic. This mode uses bisection method based on Sturm sequence computation to locate real zeros precisely. More precise plotting can be expected by this technique than by the default plotting technique, at the expense of significant increase of computing time. As
you see by above explanation, this function is only effective to polynomials
with rational coefficients. (Check how they differ for \((x^2 + y^2 - 1)^2\)).

\textbf{formula} Displays the expression for the graph.

\textbf{noaxis (toggle)}
- Erase the coordinates.
- Program ‘ox\_plot’ may consume much stack space depending on which machine it is
  running. You are recommended to set the stack size to about 16MB as large in ‘.cshrc’
  for safe. To specify the size, put \textbf{limit stacksize 16m} for an example.
- You can customize various resources of a window on \(X\), e.g., coloring, shape of buttons
  etc. The default setting of resources is shown below. For \textbf{plot*form*shapeStyle} you
  can select among \textbf{rectangle, oval, ellipse, and roundedRectangle}.

\begin{verbatim}
plot*background:white
plot*form*shapeStyle:rectangle
plot*form*background:white
plot*form*quit*background:white
plot*form*wide*background:white
plot*form*precise*background:white
plot*form*formula*background:white
plot*form*noaxis*background:white
plot*form*xcoord*background:white
plot*form*ycoord*background:white
plot*form*level*background:white
plot*form*xdone*background:white
plot*form*ydone*background:white
\end{verbatim}

\textbf{References}
- Section 7.5.1 [\texttt{ox\_launch ox\_launch\_nox ox\_shutdown}], page 92
- Section 7.5.6 [\texttt{ox\_reset ox\_intr register\_handler}], page 97

\textbf{7.5.16 open\_canvas, clear\_canvas, draw\_obj}

\textbf{open\_canvas}(\textit{id [,geometry]})
- Opens a canvas, which is a window for drawing objects.

\textbf{clear\_canvas}(\textit{id,index})
- Clears a canvas.

\textbf{draw\_obj}(\textit{id,index,pointorsegment [,color]})
- Draws a point or a line segment on a canvas.

\textbf{return} 0

\textit{id, index, color}
- integer

\textit{pointorsegment}
- list

- These functions are supplied by the OpenXM server ‘ox\_plot’ (‘engine’ on Windows).
• open_canvas opens a canvas, which is a window for drawing objects. One can specify the size of a canvas in pixel by supplying geometry option \([x,y]\). The default size is \([300,300]\). This function pushes an integer value onto the stack of the OpenXM server. The value is used to distinguish the opened canvas and one has to pop and maintain the value by ox_pop_cmo for subsequent calls of draw_obj.

• clear_canvas clears a canvas specified by a server id id and a canvas id index.

• draw_obj_canvas draws a point or a line segment on a canvas specified by a server id id and a canvas id index. If pointorsegment is \([x,y]\), it is regarded as a point. If pointorsegment is \([x,y,u,v]\), it is regarded as a line segment which connects \([x,y]\) and \([u,v]\). If color is specified, color/65536 mod 256, color/256 mod 256, color mod 256 are regarded as the values of Red, Green, Blue (Max. 255) respectively.

```plaintext
[182] Id=ox_launch_nox(0,"ox_plot");
[183] open_canvas(Id);
[184] Ind=ox_pop_cmo(Id);
[185] draw_obj(Id,Ind,[100,100]);
[186] draw_obj(Id,Ind,[200,200],0xffff);
[187] draw_obj(Id,Ind,[10,10,50,50],0xff00ff);
[188] clear_canvas(Id,Ind);
```

References

Section 7.5.1 [ox_launch ox_launch_nox ox_shutdown], page 92, Section 7.5.6 [ox_reset ox_intr register_handler], page 97, Section 7.5.8 [ox_pop_cmo ox_pop_local], page 99.
8 Groebner basis computation

8.1 Distributed polynomial

A distributed polynomial is a polynomial with a special internal representation different from the ordinary one.

An ordinary polynomial (having type 2) is internally represented in a format, called recursive representation. In fact, it is represented as an uni-variate polynomial with respect to a fixed variable, called main variable of that polynomial, where the other variables appear in the coefficients which may again polynomials in such variables other than the previous main variable. A polynomial in the coefficients is again represented as an uni-variate polynomial in a certain fixed variable, the main variable. Thus, by this recursive structure of polynomial representation, it is called the ‘recursive representation.’

\[(x + y + z)^2 = 1 \cdot x^2 + (2 \cdot y + (2 \cdot z)) \cdot x + ((2 \cdot z) \cdot y + (1 \cdot z^2))\]

On the other hand, we call a representation the distributed representation of a polynomial, if a polynomial is represented, according to its original meaning, as a sum of monomials, where a monomial is the product of power product of variables and a coefficient. We call a polynomial, represented in such an internal format, a distributed polynomial. (This naming may sounds something strange.)

\[(x + y + z)^2 = 1 \cdot x^2 + 2 \cdot xy + 2 \cdot xz + 1 \cdot y^2 + 2 \cdot yz + 1 \cdot z^2\]

For computation of Groebner basis, efficient operation is expected if polynomials are represented in a distributed representation, because major operations for Groebner basis are performed with respect to monomials. From this view point, we provide the object type distributed polynomial with its object identification number 9, and objects having such a type are available by Asir language.

Here, we provide several definitions for the later description.

term The power product of variables, i.e., a monomial with coefficient 1. In an Asir session, it is displayed in the form like

`<<0,1,2,3,4>>`

and also can be input in such a form. This example shows a term in 5 variables. If we assume the 5 variables as a, b, c, d, and e, the term represents \(b \cdot c \cdot 2 \cdot d \cdot 3 \cdot e \cdot 4\) in the ordinary expression.

term order Terms are ordered according to a total order with the following properties.

1. For all \(t \succ t\) > 1.
2. For all \(t, s, u \succ t > s\) implies \(tu > su\).

Such a total order is called a term ordering. A term ordering is specified by a variable ordering (a list of variables) and a type of term ordering (an integer, a list or a matrix).

monomial The product of a term and a coefficient. In an Asir session, it is displayed in the form like
2**\langle 0,1,2,3,4 \rangle

and also can be input in such a form.

head monomial
head term
head coefficient

Monomials in a distributed polynomial is sorted by a total order. In such representation, we call the monomial that is maximum with respect to the order the head monomial, and its term and coefficient the head term and the head coefficient respectively.

8.2 Reading files

Facilities for computing Groebner bases are provided not by built-in functions but by a set of user functions written in Asir. The set of functions is provided as a file (sometimes called package), named `gr`. The facilities will be ready to use after you load the package by `load()`. The package `gr` is placed in the standard library directory of `Asir`. Therefore, it is loaded simply by specifying its file name, unless the environment variable `ASIR_LIBDIR` is set to a non-standard one.

```
[0] load("gr")$
```

8.3 Fundamental functions

There are many functions and options defined in the package `gr`. Usually not so many of them are used. Top level functions for Groebner basis computation are the following three functions.

In the following description, `plst`, `vlist`, `order` and `p` stand for a list of polynomials, a list of variables (indeterminates), a type of term ordering and a prime less than $2^{27}$ respectively.

\texttt{\textbf{gr}(plst,vlist,order)}

Function that computes Groebner bases over the rationals. The algorithm is Buchberger algorithm with useless pair elimination criteria by Gebauer-Moeller, sugar strategy and trace-lifting by Traverso. For ordinary computation, this function is used.

\texttt{\textbf{hgr}(plst,vlist,order)}

After homogenizing the input polynomials a candidate of the `\texttt{gr}` basis is computed by trace-lifting. Then the candidate is dehomogenized and checked whether it is indeed a Groebner basis of the input. Sugar strategy often causes intermediate coefficient swells. It is empirically known that the combination of homogenization and suppresses the swells for such cases.

\texttt{\textbf{gr\_mod}(plst,vlist,order,\textit{p})}

Function that computes Groebner bases over GF(p). The same algorithm as `\texttt{gr()}` is used.
### 8.4 Controlling Groebner basis computations

One can control a Groebner basis computation by setting various parameters. These parameters can be set and examined by a built-in function `dp_gr_flags()`. Without argument it returns the current settings.

```plaintext
[100] dp_gr_flags();
[Demand,0,NoSugar,0,NoCriB,0,NoGC,0,NoMC,0,NoRA,0,NoGCD,0,Top,0,ShowMag,1, Print,1,Stat,0,Reverse,0,InterReduce,0,Multiple,0]
[101]
```

The return value is a list which contains the names of parameters and their values. The meaning of the parameters are as follows. ‘on’ means that the parameter is not zero.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoSugar</td>
<td>If ‘on’, Buchberger’s normal strategy is used instead of sugar strategy.</td>
</tr>
<tr>
<td>NoCriB</td>
<td>If ‘on’, criterion B among the Gebauer-Moeller’s criteria is not applied.</td>
</tr>
<tr>
<td>NoGC</td>
<td>If ‘on’, the check that a Groebner basis candidate is indeed a Groebner basis, is not executed.</td>
</tr>
<tr>
<td>NoMC</td>
<td>If ‘on’, the check that the resulting polynomials generates the same ideal as the ideal generated by the input, is not executed.</td>
</tr>
<tr>
<td>NoRA</td>
<td>If ‘on’, the interreduction, which makes the Groebner basis reduced, is not executed.</td>
</tr>
<tr>
<td>NoGCD</td>
<td>If ‘on’, content removals are not executed during a Groebner basis computation over a rational function field.</td>
</tr>
<tr>
<td>Top</td>
<td>If ‘on’, Only the head term of the polynomial being reduced is reduced.</td>
</tr>
<tr>
<td>Reverse</td>
<td>If ‘on’, the selection strategy of reducer in a normal form computation is such that a newer reducer is used first.</td>
</tr>
<tr>
<td>Print</td>
<td>If ‘on’, various informations during a Groebner basis computation is displayed.</td>
</tr>
<tr>
<td>Stat</td>
<td>If ‘on’, a summary of informations is shown after a Groebner basis computation. Note that the summary is always shown if Print is ‘on’.</td>
</tr>
<tr>
<td>ShowMag</td>
<td>If ‘on’ and Print is ‘on’, the sum of bit length of coefficients of a generated basis element, which we call magnitude, is shown after every normal computation. After completing the computation the maximal value among the sums is shown.</td>
</tr>
<tr>
<td>Multiple</td>
<td>If a non-zero integer, in a normal form computation over the rationals, the integer content of the polynomial being reduced is removed when its magnitude becomes Multiple times larger than a registered value, which is set to the magnitude of the input polynomial. After each content removal the registered value is set to the magnitude of the resulting polynomial. Multiple is equal to 1, the simplification is done after every normal form computation. It is empirically known that it is often efficient to set Multiple to 2 for the case where large integers appear during the computation.</td>
</tr>
</tbody>
</table>

| Demand    | If the value (a character string) is a valid directory name, then generated basis elements are put in the directory and are loaded on demand during normal |
form computations. Each element is saved in the binary form and its name coincides with the index internally used in the computation. These binary files are not removed automatically and one should remove them by hand.

If `Print` is 'on', the following information is shown.

```plaintext
[93] gr(cyclic(4), [c0, c1, c2, c3], 0)
mod = 99999999, eval = []
(0) (0) << 0, 2, 0, 0 >> (2, 3), nb = 2, nab = 5, rp = 2, sugar = 2, mag = 4
(0) (0) << 0, 1, 2, 0 >> (1, 2), nb = 3, nab = 6, rp = 2, sugar = 3, mag = 4
(0) (0) << 0, 1, 1, 2 >> (0, 1), nb = 4, nab = 7, rp = 3, sugar = 4, mag = 6
(0) (0) << 0, 0, 3, 2 >> (5, 6), nb = 5, nab = 8, rp = 2, sugar = 5, mag = 4
(0) (0) << 0, 1, 0, 4 >> (4, 6), nb = 6, nab = 9, rp = 3, sugar = 5, mag = 4
(0) (0) << 0, 0, 2, 4 >> (6, 8), nb = 7, nab = 10, rp = 4, sugar = 6, mag = 6
.... gb done
reduceall
.......
membercheck
(0, 0) (0, 0) (0, 0) (0, 0)
gbcheck total 8 pairs
.......
UP = (0, 0) SP = (0, 0) SPM = (0, 0) NF = (0, 0) NF = (0.010002, 0) ZNF = (0.010002, 0) PZ = (0, 0)
NP = (0, 0) MP = (0, 0) RA = (0, 0) MC = (0, 0) GC = (0, 0) T = 40, B = 0 M = 8 F = 6 D = 12 ZR = 5 NZR = 6
Max_mag = 6
[94]
```

In this example `mod` and `eval` indicate moduli used in trace-lifting. `mod` is a prime and `eval` is a list of integers used for evaluation when the ground field is a field of rational functions. The following information is shown after every normal form computation.

- `(TNF)` (TCNT) HT (INDEX), nb = NB, nab = NAB, rp = RP, sugar = S, mag = M

Meaning of each component is as follows.

**TNF**

CPU time for normal form computation (second)

**TCNT**

CPU time for content removal (second)

**HT**

Head term of the generated basis element

**INDEX**

Pair of indices which corresponds to the reduced S-polynomial

**NB**

Number of basis elements after removing redundancy

**NAB**

Number of all the basis elements

**RP**

Number of remaining pairs
S
Sugar of the generated basis element

M
Magnitude of the generated basis element (shown if ShowMag is 'on'.)
The summary of the informations shown after a Groebner basis computation is as follows.
If a component shows timings and it contains two numbers, they are a pair of time for
computation and time for garbage collection.

UP
Time to manipulate the list of critical pairs

SP
Time to compute S-polynomials over the rationals

SPM
Time to compute S-polynomials over a finite field

NF
Time to compute normal forms over the rationals

NFM
Time to compute normal forms over a finite field

ZNFM
Time for zero reductions in NFM

PZ
Time to remove integer contents

NP
Time to compute remainders for coefficients of polynomials with coefficients in
the rationals

MP
Time to select pairs from which S-polynomials are computed

RA
Time to interreduce the Groebner basis candidate

MC
Time to check that each input polynomial is a member of the ideal generated
by the Groebner basis candidate.

GC
Time to check that the Groebner basis candidate is a Groebner basis

T
Number of critical pairs generated

E, M, F, D
Number of critical pairs removed by using each criterion
ZR
Number of S-polynomials reduced to 0

NZR
Number of S-polynomials reduced to non-zero results

Max_mag
Maximal magnitude among all the generated polynomials

8.5 Setting term orderings

A term is internally represented as an integer vector whose components are exponents with respect to variables. A variable list specifies the correspondences between variables and components. A type of term ordering specifies a total order for integer vectors. A type of term ordering is represented by an integer, a list of integer or matrices.

There are following three fundamental types.

0 (DegRevLex; total degree reverse lexicographic ordering)
In general, computation by this ordering shows the fastest speed in most Groebner basis computations. However, for the purpose to solve polynomial equations, this type of ordering is, in general, not so suitable. The Groebner bases obtained by this ordering is used for computing the number of solutions, solving ideal membership problem and seeds for conversion to other Groebner bases under different ordering.

1 (DegLex; total degree lexicographic ordering)
By this type term ordering, Groebner bases are obtained fairly faster than Lex (lexicographic) ordering, too. Alike the DegRevLex ordering, the result, in general, cannot directly be used for solving polynomial equations. It is used, however, in such a way that a Groebner basis is computed in this ordering after homogenization to obtain the final lexicographic Groebner basis.

2 (Lex; lexicographic ordering)
Groebner bases computed by this ordering give the most convenient Groebner bases for solving the polynomial equations. The only and serious shortcoming is the enormously long computation time. It is often observed that the number coefficients of the result becomes very very long integers, especially if the ideal is 0-dimensional. For such a case, it is empirically true for many cases that i.e., computation by gr() and/or hgr() may be quite effective.

By combining these fundamental orderingl into a list, one can make various term ordering called elimination orderings.

[[01,L1],[02,L2],...]

In this example 0i indicates 0, 1 or 2 and Li indicates the number of variables subject to the correspoinding orderings. This specification means the following.

The variable list is separated into sub lists from left to right where the i-th list contains Li members and it corresponds to the ordering of type 0i. The result of a comparison is equal to that for the leftmost different sub components. This type of ordering is called an elimination ordering.
Furthermore one can specify a term ordering by a matrix. Suppose that a real $n$, $m$ matrix $M$ has the following properties.

1. For all integer vectors $v$ of length $m M v = 0$ is equivalent to $v = 0$.
2. For all non-negative integer vectors $v$ the first non-zero component of $M v$ is non-negative.

Then we can define a term ordering such that, for two vectors $t$, $s$, $t > s$ means that the first non-zero component of $M(t - s)$ is non-negative.

Types of term orderings are used as arguments of functions such as $gr()$. It is also set internally by $dp$ord() and is used during executions of various functions.

For concrete definitions of term ordering and more information about Groebner basis, refer to, for example, the book [Becker, Weispfenning].

Note that the variable ordering have strong effects on the computation time as well as the choice of types of term orderings.

[90] $B = \{x \cdot 10 - t, x \cdot 8 - z, x \cdot 31 - x \cdot 6 - x \cdot y\}$
[91] $gr(B, [x, y, z, t], 2);$
[92] $[x \cdot 2 - 2 y \cdot 7 + (-4 t \cdot 12 - 13 t \cdot 1) y \cdot 2 + (2 t \cdot 17 - 12 t \cdot 14 + 4 t \cdot 12 \cdot 30 t \cdot 11 - 168 t \cdot 9 - 40 t \cdot 8 \cdot 70 t \cdot 7 + 252 t \cdot 6 \cdot 30 t \cdot 5 - 140 t \cdot 4 \cdot 168 t \cdot 3 + 2 t \cdot 2 - 12 t + 16) \cdot z \cdot 2 \cdot y$
$+ (-12 t \cdot 16 + 72 t \cdot 13 - 28 t \cdot 11 - 180 t \cdot 10 + 112 t \cdot 8 + 240 t \cdot 7 + 28 t \cdot 6 - 127 t \cdot 5 - 167 t \cdot 4 + 55 t \cdot 3 + 30 t \cdot 2 + 58 t \cdot 15) \cdot z \cdot 4$, $\left(\begin{array}{c}y^t + 2 y^2 \cdot x^0 + y^7 + (20 t^2 + 6 t^1 + 1) y^2 + (-t^1 + 16 t^0 - 14 - 21 t^0 - 12 - 15 t^0 + 11 + 84 t^0 - 9 + 20 t^0 - 8 - 35 t^0 - 7 - 128 t^0 - 16 - 15 t^0 - 5 + 70 t^0 - 4 + 84 t^0 - 3 - 2 + 5 t^0 - 9) \cdot z \cdot 2 \cdot y + (6 t^0 - 16 - 36 t^0 - 13 + 14 t^0 - 11 + 90 t^0 - 10 - 56 t^0 - 8 - 120 t^0 - 7 - 14 t^0 - 6 + 64 t^0 - 5 + 84 t^0 - 4 + 27 t^0 - 3 - 16 t^0 - 2 - 30 t^0 - 7) \cdot z \cdot 4, (t^3 - 1) x \cdot y \cdot 6 + (-6 t^1 + 13 + 24 t^0 - 10 - 20 t^0 - 8 - 36 t^0 - 7 + 40 t^0 - 5 + 24 t^0 - 4 - 6 t^0 - 3 - 20 t^0 - 2 - 6 t^0 - 1) \cdot y$
$+ (t^1 - 17 - 6 t^0 - 14 + 9 t^0 - 12 + 15 t^0 - 11 - 36 t^0 - 9 - 20 t^0 - 8 - 5 t^0 - 7 + 54 t^0 - 6 + 15 t^0 - 5 + 10 t^0 - 4 - 36 t^0 - 3 - 11 t^0 - 2 - 5 t^0 - 9) \cdot z \cdot 2, y^8 - 8 t^0 \cdot 2 y^3 + 16 z \cdot 2 y^2 + (-8 t^0 - 16 + 48 t^0 - 13 - 56 t^0 - 11 - 120 t^0 - 10 + 224 t^0 - 8 + 160 t^0 - 7 - 56 t^0 - 6 - 336 t^0 - 5 - 112 t^0 - 4 + 112 t^0 - 3 + 224 t^0 - 2 + 24 t^0 - 56) \cdot z \cdot 4 \cdot y + (t^0 - 24 - 8 t^0 - 21 + 20 t^0 - 19 + 28 t^0 - 18 - 120 t^0 - 16 - 56 t^0 - 15 + 14 t^0 - 14 + 300 t^0 - 13 + 70 t^0 - 12 - 56 t^0 - 11 - 400 t^0 - 10 - 84 t^0 - 9 + 84 t^0 - 8 + 268 t^0 - 7 + 84 t^0 - 6 - 56 t^0 - 5 - 63 t^0 - 4 + 36 t^0 - 3 + 46 t^0 - 2 - 12 t^0 + 1) \cdot z, 2 t^0 y^5 + z y^2 + (-2 t^1 + 11 + 8 t^0 - 8 - 20 t^0 - 6 - 12 t^0 - 5 + 40 t^0 - 3 + 8 t^0 - 2 - 10 t^0 - 20) \cdot z \cdot 3 \cdot y^8 + 8 t^0 \cdot 14 - 32 t^0 - 11 + 48 t^0 - 8 - 7 - 32 t^0 - 5 - 6 t^0 - 4 t^0 - 19 t^0 - 2 - t, -2 t^0 y^3 + (t^0 - 7 - 2 t^0 + 4 + 3 t^0 - 2 + t) \cdot y^2 + (2 t^0 - 6 + 4 t^0 + 3 + 2 t^0 - 2) \cdot z \cdot 2, 2 t^0 - 2 y^3 + z^2 + 3 y^2 + 2 (-2 t^0 - 5 + 4 t^0 - 2 + 6) \cdot z \cdot 4 y^4 + (4 t^0 - 8 - 7 - 8 t^0 - 5 + 2 t^0 - 4 t^0 - 3 + 5 t^0 - 2 - t) \cdot z, z^3 y^2 + 2 t^0 - 3 \cdot y^2 + (-t^0 - 7 + 2 t^0 - 4 t^0 - 2 - t) \cdot z \cdot 2, -t^0 - 2 t^0 - 2 + 3 y^2 + 2 + (t^0 - 6 - 2 t^0 - 3 - t^0 + 1) \cdot z \cdot 4, z^5 - t^0 - 4]$
[93] $gr(B, [t, z, y, x], 2);$
[92] $[x \cdot 10 - t, x \cdot 8 - z, x \cdot 31 - x \cdot 6 - x \cdot y]$

As you see in the above example, the Groebner base under variable ordering $[x, y, z, t]$ has a lot of bases and each base itself is large. Under variable ordering $[t, z, y, x]$, however, B itself is already the Groebner basis. Roughly speaking, to obtain a Groebner base under the lexicographic ordering is to express the variables on the left (having higher order) in terms of variables on the right (having lower order). In the example, variables $t$, $z$, and $y$ are already expressed by variable $x$, and the above explanation justifies such a drastic experimental results. In practice, however, optimum ordering for variables may not known beforehand, and some heuristic trial may be inevitable.
8.6 Groebner basis computation with rational function coefficients

Such variables that appear within the input polynomials but not appearing in the input variable list are automatically treated as elements in the coefficient field by top level functions, such as gr().

\[
\begin{align*}
\text{gr} & : [\text{a}*x+b*y-c, d*x+e*y-f], [x, y], 2) \\
& : [(\text{e}*a+d*b)*x-f*b+e*c, (\text{e}*a+d*b)*y+f*a-d*c]
\end{align*}
\]

In this example, variables \(a, b, c,\) and \(d\) are treated as elements in the coefficient field. In this case, a Groebner basis is computed on a bi-variate polynomial ring \(F[x, y]\) over rational function field \(F = Q(a, b, c, d)\). Notice that coefficients are considered as a member in a field. As a consequence, polynomial factors common to the coefficients are removed so that the result, in general, is different from the result that would be obtained when the problem is considered as a computation of Groebner basis over a polynomial ring with rational function coefficients. And note that coefficients of a distributed polynomial are limited to numbers and polynomials because of efficiency.

8.7 Change of ordering

When we compute a lex order Groebner basis, it is often efficient to compute it via Groebner basis with respect to another order such as degree reverse lex order, rather than to compute it directory by \(\text{gr()}\) etc. If we know that an input is a Groebner basis with respect to an order, we can apply special methods called change of ordering for a Groebner basis computation with respect to another order, without using Buchberger algorithm. The following two functions are ones for change of ordering such that they convert a Groebner basis \(gbase\) with respect to the variable order \(vlist1\) and the order type \(order\) into a lex Groebner basis with respect to the variable order \(vlist2\).

\text{tolex}(gbase, vlist1, order, vlist2)

This function can be used only when \(gbase\) is an ideal over the rationals. The input \(gbase\) must be a Groebner basis with respect to the variable order \(vlist1\) and the order type \(order\). Moreover the ideal generated by \(gbase\) must be zero-dimensional. This computes the lex Groebner basis of \(gbase\) by using the modular change of ordering algorithm. The algorithm first computes the lex Groebner basis over a finite field. Then each element in the lex Groebner basis over the rationals is computed with undetermined coefficient method and linear equation solving by Hensel lifting.

\text{tolex_t1}(gbase, vlist1, order, vlist2, homo)

This function computes the lex Groebner basis of \(gbase\). The input \(gbase\) must be a Groebner basis with respect to the variable order \(vlist1\) and the order type \(order\). Buchberger algorithm with trace lifting is used to compute the lex Groebner basis, however the Groebner basis check and the ideal membership check can be omitted by using several properties derived from the fact that the input is a Groebner basis. So it is more efficient than simple repetition of Buchberger algorithm. If the input is zero-dimensional, this function inserts automatically a computation of Groebner basis with respect to an elimination order, which makes the whole computation more efficient for many cases. If \(homo\) is not equal to 0, homogenization is used in each step.
For zero-dimensional systems, there are several functions to compute the minimal polynomial of a polynomial and or a more compact representation for zeros of the system. They are all defined in ‘gr’. Refer to the sections for each functions.

### 8.8 Functions for Groebner basis computation

#### 8.8.1 gr, hgr, gr_mod, dgr

- `gr(plist, vlist, order)`
- `hgr(plist, vlist, order)`
- `gr_mod(plist, vlist, order, p)`
- `dgr(plist, vlist, order, procs)`

: Groebner basis computation

```plaintext
return
plist, vlist, procs
list
order number, list or matrix
p prime less than 2^27
```

- These functions are defined in ‘gr’ in the standard library directory.
- They compute a Groebner basis of a polynomial list `plist` with respect to the variable order `vlist` and the order type `order`. `gr()` and `hgr()` compute a Groebner basis over the rationals and `gr_mod` computes over GF(p).
- Variables not included in `vlist` are regarded as included in the ground field.
- `gr()` uses trace-lifting (an improvement by modular computation) and sugar strategy. `hgr()` uses trace-lifting and a cured sugar strategy by using homogenization.
- `dgr()` executes `gr()`, `dgr()` simultaneously on two process in a child process list `procs` and returns the result obtained first. The results returned from both the process should be equal, but it is not known in advance which method is faster. Therefore this function is useful to reduce the actual elapsed time.
- The CPU time shown after an execution of `dgr()` indicates that of the master process, and most of the time corresponds to the time for communication.

```plaintext
[0] load("gr")$
[64] load("cyclic")$
[74] G=gr(cyclic(5),[c0,c1,c2,c3,c4],2);
[c4^15+122*c4^-10-122*c4^-5-1,...]
[75] GM=gr_mod(cyclic(5),[c0,c1,c2,c3,c4],2,31991)$
24628*c4^15+29453*c4^-10+2538*c4^-5+7363
[76] (G[0]*24628-GM[0])%31991; 0
```

**References**

Section 8.8.6 [dp_gr_main dp_gr_mod_main], page 120, Section 8.8.9 [dp_ord], page 121.
8.8.2 lex_hensel, lex_t1, tolex, tolex_d, tolex_t1

`lex_hensel(plist, vlist1, order, vlist2, homo)`
`lex_t1(plist, vlist1, order, vlist2, homo)`

: Groebner basis computation with respect to a lex order by change of ordering

`tolex(plist, vlist1, order, vlist2)`
`tolex_d(plist, vlist1, order, vlist2, procs)`
`tolex_t1(plist, vlist1, order, vlist2, homo)`

: Groebner basis computation with respect to a lex order by change of ordering, starting from a Groebner basis

`return list`  
`plist, vlist1, vlist2, procs`  
`list`  

`order number, list or matrix`  

`homo flag`  

- These functions are defined in `gr` in the standard library directory.

- `lex_hensel()` and `lex_t1()` first compute a Groebner basis with respect to the variable order `vlist1` and the order type `order`. Then the Groebner basis is converted into a lex order Groebner basis with respect to the variable order `vlist2`.

- `tolex()` and `tolex_t1()` convert a Groebner basis `plist` with respect to the variable order `vlist1` and the order type `order` into a lex order Groebner basis with respect to the variable order `vlist2`. `tolex_d()` does computations of basis elements in `tolex()` in parallel on the processes in a child process list `procs`.

- In `lex_hensel()` and `tolex_hensel()` a lex order Groebner basis is computed as follows. (Refer to [Noro,Yokoyama].)
  1. Compute a Groebner basis `G0` with respect to `vlist1` and `order`. (Only in `lex_hensel()`.)
  2. Choose a prime which does not divide head coefficients of elements in `G0` with respect to `vlist1` and `order`. Then compute a lex order Groebner basis `Gp` over `GF(p)` with respect to `vlist2`.
  3. Compute NF, the set of all the normal forms with respect to `G0` of terms appearing in `Gp`.
  4. For each element `f` in `Gp`, replace coefficients and terms in `f` with undetermined coefficients and the corresponding polynomials in `NF` respectively, and generate a system of linear equation `Lf` by equating the coefficients of terms in the replaced polynomial with 0.
  5. Solve `Lf` by Hensel lifting, starting from the unique mod `p` solution.
  6. If all the linear equations generated from the elements in `Gp` could be solved, then the set of solutions corresponds to a lex order Groebner basis. Otherwise redo the whole process with another `p`.

- In `lex_t1()` and `tolex_t1()` a lex order Groebner basis is computed as follows. (Refer to [Noro,Yokoyama].)
1. Compute a Groebner basis $G0$ with respect to vlist1 and order. (Only in lex_t1().)

2. If $G0$ is not zero-dimensional, choose a prime which does not divide head coefficients of elements in $G0$ with respect to vlist1 and order. Then compute a candidate of a lex order Groebner basis via trace lifting with $p$. If it succeeds the candidate is indeed a lex order Groebner basis without any check. Otherwise redo the whole process with another $p$.

3. If $G0$ is zero-dimensional, starting from $G0$, compute a Groebner basis $G1$ with respect to an elimination order to eliminate variables other than the last variable in vlist2. Then compute a lex order Groebner basis stating from $G1$. These computations are done by trace lifting and the selection of a modulus $p$ is the same as in non zero-dimensional cases.

- Computations with rational function coefficients can be done only by lex_t1() and tolex_t1().
- If homo is not equal to 0, homogenization is used in Buchberger algorithm.
- The CPU time shown after an execution of tolex_d() indicates that of the master process, and it does not include the time in child processes.

```
[78] K=katsura(5)$
30msec + gc : 20msec
[79] V=[u5,u4,u3,u2,u1,u0]$
0msec
[80] G0=hgr(K,V,2)$
91.558sec + gc : 15.583sec
[81] G1=lex_hensel(K,V,0,V,0)$
49.049sec + gc : 9.961sec
[82] G2=lex_t1(K,V,0,V,1)$
31.186sec + gc : 3.500sec
[83] gb_comp(G0,G1);
1
10msec
[84] gb_comp(G0,G2);
1
```

References

Section 8.8.6 [dp_gr_main dp_gr_mod_main], page 120, Section 8.8.9 [dp_ord], page 121, Chapter 7 [Distributed computation], page 89

8.8.3 lex_hensel_gsl, tolex_gsl, tolex_gsl_d

`lex_hensel_gsl(plist,vlist1,order,vlist2,homo)`

:: Computation of an GSL form ideal basis

`tolex_gsl(plist,vlist1,order,vlist2,homo)`

`tolex_gsl_d(plist,vlist1,order,vlist2,homo,procs)`

:: Computation of an GSL form ideal basis stating from a Groebner basis

`return` list
\[\begin{align*}
\text{plist, vlist1, vlist2, procs} & \quad \text{list} \\
\text{order} & \quad \text{number, list or matrix} \\
\text{homo} & \quad \text{flag} \\
\text{\texttt{lex\_hensel\_gsl()}} \text{ and } \text{\texttt{lex\_hensel()}} & \text{are variants of } \text{\texttt{tolex\_gsl()}} \text{ and } \text{\texttt{tolex()}} \text{ respectively. The results are Groebner basis or a kind of ideal basis, called GSL form.} \\
\text{\texttt{tolex\_gsl\_d()}} \text{ does basis computations in parallel on child processes specified in procs.} \\
\text{If the input is zero-dimensional and a lex order Groebner basis has the form } [f_0,x_1-f_1,\ldots,x_n-f_n] \text{ (} f_0,\ldots, f_n \text{ are univariate polynomials of } x_0; \text{ SL form), then this these functions return a list such as } [[x_1,g_1,d_1],\ldots,[x_n,g_n,d_n],[x_0,f_0,f_0']] \text{ (GSL form). In this list } g_i \text{ is a univariate polynomial of } x_0 \text{ such that } d_i*f_0'*f_i-g_i \text{ divides } f_0 \text{ and the roots of the input ideal is } [x_1=g_1/(d_1*f_0'),\ldots,x_n=g_n/(d_n*f_0')] \text{ for } x_0 \text{ such that } f_0(x_0)=0. \text{ If the lex order Groebner basis does not have the above form, these functions return a lex order Groebner basis computed by } \text{\texttt{tolex()}}. \\
\text{Though an ideal basis represented as GSL form is not a Groebner basis we can expect that the coefficients are much smaller than those in a Groebner basis and that the computation is efficient. The CPU time shown after an execution of } \text{\texttt{tolex\_gsl\_d()}} \text{ indicates that of the master process, and it does not include the time in child processes.} \\
\end{align*}\]

\begin{verbatim}
[103] K=katsura(5)$
[104] V=[u5,u4,u3,u2,u1,u0]$ 
[105] G0=gr(K,V,0)$
[106] GSL=tolex_gsl(G0,V,0,V)$
[107] GSL[0];
[108] GSL[1];
[109] GSL[5];
[110] u0,117710218761930641246400000000*u0^32-\ldots,37667270038178051988480000000*u0^31-\ldots]
\end{verbatim}

References

Section 8.8.2 \cite{lex_hensel, lex_tl, tolex, tolex_d, tolex_tl}, page 116, Chapter 7 \cite{[Distributed computation]}, page 89

8.8.4 \texttt{gr\_minipoly, minipoly}

\texttt{gr\_minipoly(plist, vlist, order, poly, v, homo)}
:: Computation of the minimal polynomial of a polynomial modulo an ideal

\texttt{minipoly(plist, vlist, order, poly, v)}
:: Computation of the minimal polynomial of a polynomial modulo an ideal

\texttt{return} \quad \text{polynomial}

\texttt{plist, vlist} \quad \text{list}

\texttt{order} \quad \text{number, list or matrix}

\texttt{poly} \quad \text{polynomial}
\[ v \text{ indeterminate} \]

**homo flag**

- \texttt{gr\_minipoly()} begins by computing a Groebner basis. \texttt{minipoly()} regards an input as a Groebner basis with respect to the variable order \texttt{vlist} and the order type \texttt{order}.
- Let \( K \) be a field. If an ideal \( I \) in \( K[X] \) is zero-dimensional, then, for a polynomial \( p \) in \( K[X] \), the kernel of a homomorphism from \( K[v] \) to \( K[X]/I \) which maps \( f(v) \) to \( f(p) \mod I \) is generated by a polynomial. The generator is called the minimal polynomial of \( p \) modulo \( I \).
- \texttt{gr\_minipoly()} and \texttt{minipoly()} computes the minimal polynomial of a polynomial \( p \) and returns it as a polynomial of \( v \).
- The minimal polynomial can be computed as an element of a Groebner basis. But if we are only interested in the minimal polynomial, \texttt{minipoly()} and \texttt{gr\_minipoly()} can compute it more efficiently than methods using Groebner basis computation.
- It is recommended to use a degree reverse lex order as a term order for \texttt{gr\_minipoly()}.

\[
\begin{align*}
\text{[117]} & \ G=\text{toplex}(G0,V,0,V) \\
& \text{43.818sec + gc : 11.202sec} \\
\text{[118]} & \ GSL=\text{toplex}_\text{gs1}(G0,V,0,V) \\
& \text{17.123sec + gc : 2.590sec} \\
\text{[119]} & \ MP=\text{minipoly}(G0,V,0,u0,z) \\
& \text{4.370sec + gc : 780msec}
\end{align*}
\]

**References**

Section 8.8.2 [\texttt{lex\_hensel lex\_t1 tolex tolex\_d tolex\_t1}], page 116.

### 8.8.5 tolexm, minipoly

**toplex\( (plist, vlist1, order, vlist2, \text{mod}) \)**

:: Groebner basis computation modulo \texttt{mod} by change of ordering.

**minipoly\( (plist, vlist1, order, poly, v, \text{mod}) \)**

:: Minimal polynomial computation modulo \texttt{mod} the same method as

\[ \text{return} \quad \text{toplex}() : \text{list}, \text{minipoly}() : \text{polynomial} \]

**plist, vlist1, vlist2**

list

**order**

number, list or matrix

**mod**

prime

- An input \texttt{plist} must be a Groebner basis modulo \texttt{mod} with respect to the variable order \texttt{vlist1} and the order type \texttt{order}.
- \texttt{minipoly()} executes the same computation as in \texttt{minipoly}.
- \texttt{toplex()} computes a lex order Groebner basis modulo \texttt{mod} with respect to the variable order \texttt{vlist2}, by using FGLM algorithm.

\[
\begin{align*}
\text{[197]} & \ \text{toplex}(G0,V,0,V,31991); \\
& \text{[827]*u0^31+10435*u0^30+816*u0^29+26809*u0^28+...,...] } \\
\text{[198]} & \ \text{minipoly}(G0,V,0,u0,z,31991); \\
& z^{32}+11405*z^{31}+20868*z^{30}+21602*z^{29}+...
\end{align*}
\]
References

Section 8.8.2 [lex_hensel lex_tl tolex tolex_d tolex_tl], page 116, Section 8.8.4 [gr_minipoly minipoly], page 118.

8.8.6 dp_gr_main, dp_gr_mod_main

\begin{verbatim}
dp_gr_main(plist, vlist, homo, modular, order)
dp_gr_mod_main(plist, vlist, homo, modular, order)
  :: Groebner basis computation (built-in functions)
return  list
plist, vlist  list
order  number, list or matrix
homo  flag
modular  flag or prime
\end{verbatim}

- These functions are fundamental built-in functions for Groebner basis computation and 
gr(), hgr() and gr_mod() are all interfaces to these functions.
- If homo is not equal to 0, homogenization is applied before entering Buchberger algorithm
- For dp_gr_mod_main(), modular means a computation over GF(modular). For dp_gr_main(), modular has the following mean.
  1. If modular is 1, trace lifting is used. Primes for trace lifting are generated by 
     lprime(), starting from lprime(0), until the computation succeeds.
  2. If modular is an integer greater than 1, the integer is regarded as a prime and trace 
     lifting is executed by using the prime. If the computation fails then 0 is returned.
  3. If modular is negative, the above rule is applied for -modular but the Groebner 
     basis check and ideal-membership check are omitted in the last stage of trace 
     lifting.
- gr(P,V,0), hgr(P,V,0) and gr_mod(P,V,0,M) execute dp_gr_main(P,V,0,1,0), dp_gr_main(P,V,1,1,0) and dp_gr_mod_main(P,V,0,M,0) respectively.
- Actual computation is controlled by various parameters set by dp_gr_flags(), other 
then by homo and modular.

References

Section 8.8.9 [dp_ord], page 121, Section 8.8.8 [dp_gr_flags dp_gr_print], 
page 121, Section 8.8.1 [gr hgr gr_mod], page 115, Section 8.4 [Controlling 
Groebner basis computations], page 109

8.8.7 dp_f4_main, dp_f4_mod_main

\begin{verbatim}
dp_f4_main(plist, vlist, order)
dp_f4_mod_main(plist, vlist, order)
  :: Groebner basis computation by F4 algorithm (built-in functions)
return  list
\end{verbatim}
\textit{plist, vlist} list

\textit{order} number, list or matrix

- These functions compute Groebner bases by F4 algorithm.
- F4 is a new generation algorithm for Groebner basis computation invented by J.C. Faugere. The current implementation of \texttt{dp\_f4\_main()} uses Chinese Remainder theorem and not highly optimized.
- Arguments and actions are the same as those of \texttt{dp\_gr\_main()}, \texttt{dp\_gr\_mod\_main()}.

\textbf{References}

Section 8.8.9 [\texttt{dp\_ord}], page 121, Section 8.8.8 [\texttt{dp\_gr\_flags} \texttt{dp\_gr\_print}], page 121, Section 8.8.1 [\texttt{gr hgr gr\_mod}], page 115, Section 8.4 [Controlling Groebner basis computations], page 109

\textbf{8.8.8 dp\_gr\_flags, dp\_gr\_print}

\begin{verbatim}
\texttt{dp\_gr\_flags([list])}
\end{verbatim}

\begin{verbatim}
\texttt{dp\_gr\_print([0|1])}
\end{verbatim}

and showing informations.

\textit{return} value currently set

\textit{list} list

- \texttt{dp\_gr\_flags()} sets and shows various parameters for Groebner basis computation.
- If no argument is specified the current settings are returned.
- Arguments must be specified as a list such as ["Print",1,"NoSugar",1,...]. Names of parameters must be character strings.
- \texttt{dp\_gr\_print()} is used to set and show the value of a parameter \texttt{Print}. This function is prepared to get quickly the value of \texttt{Print} when a user defined function calling \texttt{dp\_gr\_main()} etc. uses the value as a flag for showing intermediate informations.

\textbf{References}

Section 8.4 [Controlling Groebner basis computations], page 109

\textbf{8.8.9 dp\_ord}

\begin{verbatim}
\texttt{dp\_ord([order])}
\end{verbatim}

:: Set and show the ordering type.

\textit{return} ordering type (number, list or matrix)

\textit{order} number, list or matrix

- If an argument is specified, the function sets the current ordering type to \texttt{order}. If no argument is specified, the function returns the ordering type currently set.
- There are two types of functions concerning distributed polynomial, functions which take a ordering type and those which don't take it. The latter ones use the current setting.
• Functions such as gr(), which need a ordering type as an argument, call dp_ord() internally during the execution. The setting remains after the execution.

Fundamental arithmetics for distributed polynomial also use the current setting. Therefore, when such arithmetics for distributed polynomials are done, the current setting must coincide with the ordering type which was used upon the creation of the polynomials. It is assumed that such polynomials were generated under the same ordering type.
• Type of term ordering must be correctly set by this function when functions other than top level functions are called directly.

[19] dp_ord(0)$
[20] <<1,2,3>>+<<3,1,1>>;
(1) *<<1,2,3>>+ (1) *<<3,1,1>>
[21] dp_ord(2)$
[22] <<1,2,3>>+<<3,1,1>>;
(1) *<<3,1,1>>+ (1) *<<1,2,3>>

References
Section 8.5 [Setting term orderings], page 112

8.8.10 dp_ptod

dp_ptod(poly,vlist)
:: Converts an ordinary polynomial into a distributed polynomial.

return distributed polynomial
poly polynomial
vlist list

• According to the variable ordering vlist and current type of term ordering, this function converts an ordinary polynomial into a distributed polynomial.
• Indeterminates not included in vlist are regarded to belong to the coefficient field.

[50] dp_ord(0);
1
[51] dp_ptod((x+y+z)^2,[x,y,z]);
(1) *<<2,0,0>>+ (2) *<<1,1,0>>+ (1) *<<0,2,0>>+ (2) *<<1,0,1>>+ (2) *<<0,1,1>>
+ (1) *<<0,0,2>>
[52] dp_ptod((x+y+z)^2,[x,y]);
(1) *<<2,0,0>>+ (2) *<<1,1,0>>+ (1) *<<0,2,0>>+ (2*z) *<<1,0,0>>+ (2*z) *<<0,1,0>>+ (z^2) *<<0,0,0>>

References
Section 8.8.11 [dp_dtop], page 123, Section 8.8.9 [dp_ord], page 121.

8.8.11 dp_dtop

dp_dtop(dpoly,vlist)
:: Converts a distributed polynomial into an ordinary polynomial.

return polynomial
\textit{dpoly} distributed polynomial
\textit{vlist} list

- This function converts a distributed polynomial into an ordinary polynomial according to a list of indeterminates \textit{vlist}.
- \textit{vlist} is such a list that its length coincides with the number of variables of \textit{dpoly}.

\begin{verbatim}
[53] T=dp_ptod((x+y+z)^2,[x,y]);
    (1)**<2,0>+(2)**<1,1>+(1)**<0,2>+(2*z)**<0,1>+(z^2)**<0,0>
[54] P=dp_dtop(T,[a,b]);
    z^2+(2*a+2*b)*z+a^2+2*b*a+b^2
\end{verbatim}

\section*{8.8.12 \texttt{dp\_mod}, \texttt{dp\_rat}}

\texttt{dp\_mod}(p, \texttt{mod}, \texttt{subst})

:: Converts a distributed polynomial into one with coefficients in a finite field.

\texttt{dp\_rat}(p)

:: Converts a distributed polynomial with coefficients in a finite field into one with coefficients in the rationals.

\textbf{return} distributed polynomial

\textbf{p} distributed polynomial

\textbf{mod} prime

\textbf{subst} list

- \texttt{dp\_nf\_mod()} and \texttt{dp\_true\_nf\_mod()} require distributed polynomials with coefficients in a finite field as arguments. \texttt{dp\_mod()} is used to convert distributed polynomials with rational number coefficients into appropriate ones. Polynomials with coefficients in a finite field cannot be used as inputs of operations with polynomials with rational number coefficients. \texttt{dp\_rat()} is used for such cases.

- The ground finite field must be set in advance by using \texttt{setmod()}.

- \textit{subst} is such a list as [\texttt{[var,value]}, \ldots]. This is valid when the ground field of the input polynomial is a rational function field. \textit{var}'s are variables in the ground field and the list means that \textit{value} is substituted for \textit{var} before converting the coefficients into elements of a finite field.

\section*{References}

Section 8.8.15 \texttt{[dp\_nf dp\_nf\_mod dp\_true\_nf dp\_true\_nf\_mod]}, page 125, Section 6.3.11 \texttt{[subst psubst]}, page 47, Section 6.1.15 \texttt{[setmod]}, page 39.

\section*{8.8.13 \texttt{dp\_homo}, \texttt{dp\_dehomo}}

\texttt{dp\_homo}(\textit{dpoly})

:: Homogenize a distributed polynomial

\texttt{dp\_dehomo}(\textit{dpoly})

:: Dehomogenize a homogenous distributed polynomial

\textbf{return} distributed polynomial
**dpoly** distributed polynomial

- **dp_homo()** makes a copy of `dpoly`, extends the length of the exponent vector of each term `t` in the copy by 1, and sets the value of the newly appended component to `d-deg(t)`, where `d` is the total degree of `dpoly`.
- **dp_dehomo()** make a copy of `dpoly` and removes the last component of each terms in the copy.
- Appropriate term orderings must be set when the results are used as inputs of some operations.
- These are used internally in hgr() etc.

```
[202] x<<1,2,3>>+3*<<1,2,1>>;
(1)<<1,2,3>>+(3)<<1,2,1>>
[203] dp_homo(X);
(1)<<1,2,3,0>>+(3)<<1,2,1,2>>
[204] dp_dehomo(0);
(1)<<1,2,3>>+(3)<<1,2,1>>
```

References
Section 8.8.1 [gr hgr gr_mod], page 115.

### 8.8.14 dp_ptozp, dp_prim

**dp_ptozp(dpoly)**
:: Converts a distributed polynomial poly with rational coefficients into an integral distributed polynomial such that GCD of all its coefficients is 1.

**dp_prim(dpoly)**
:: Converts a distributed polynomial poly with rational function coefficients into an integral distributed polynomial such that polynomial GCD of all its coefficients is 1.

**return** distributed polynomial

**dpoly** distributed polynomial

- **dp_ptozp()** executes the same operation as ptozp() for a distributed polynomial. If the coefficients include polynomials, polynomial contents included in the coefficients are not removed.
- **dp_prim()** removes polynomial contents.

```
[208] x=dp_ptdot(3*(x-y)*(y-z)*(z-x),[x]);
(-3*y+3*z)<<2>>+(3*y^2-3*z^2)<<1>>+(-3*z*y^2+3*z^2*y)<<(0>>
[209] dp_ptozp(x);
(-y+z)<<2>>+(y^2-z^2)<<1>>+(-z*y^2+z^2*y)<<0>>
[210] dp_prim(x);
(1)<<2>>+(-y-z)<<1>>+(z*y)<<0>>
```

References
Section 6.3.17 [ptozp], page 51.
8.8.15 dp_nf, dp_nf_mod, dp_true_nf, dp_true_nf_mod

\texttt{dp\_nf(indexlist,dpoly,dpolyarray,fullreduce)}

\texttt{dp\_nf\_mod(indexlist,dpoly,dpolyarray,fullreduce,mod)}

:: Computes the normal form of a distributed polynomial. (The result may be multiplied by a constant in the ground field.)

\texttt{dp\_true\_nf(indexlist,dpoly,dpolyarray,fullreduce)}

\texttt{dp\_true\_nf\_mod(indexlist,dpoly,dpolyarray,fullreduce,mod)}

:: Computes the normal form of a distributed polynomial. (The true result is returned in such a list as [\texttt{numerator}, \texttt{denominator}])

\texttt{return} \quad \texttt{dp\_nf()} : \texttt{distributed polynomial}, \ \texttt{dp\_true\_nf()} : \texttt{list}

\texttt{indexlist} \quad \texttt{list}

\texttt{dpoly} \quad \texttt{distributed polynomial}

\texttt{dpolyarray} \quad \texttt{array of distributed polynomial}

\texttt{fullreduce} \quad \texttt{flag}

\texttt{mod} \quad \texttt{prime}

- Computes the normal form of a distributed polynomial.
- \texttt{dp\_nf\_mod()} and \texttt{dp\_true\_nf\_mod()} require distributed polynomials with coefficients in a finite field as arguments.
- The result of \texttt{dp\_nf()} may be multiplied by a constant in the ground field in order to make the result integral. The same is true for \texttt{dp\_nf\_mod()}, but it returns the true normal form if the ground field is a finite field.
- \texttt{dp\_true\_nf()} and \texttt{dp\_true\_nf\_mod()} return such a list as [\texttt{nm}, \texttt{dn}]. Here \texttt{nm} is a distributed polynomial whose coefficients are integral in the ground field, \texttt{dn} is an integral element in the ground field and \texttt{nm/dn} is the true normal form.
- \texttt{dpolyarray} is a vector whose components are distributed polynomials and \texttt{indexlist} is a list of indices which is used for the normal form computation.
- When argument \texttt{fullreduce} has non-zero value, all terms are reduced. When it has value 0, only the head term is reduced.
- As for the polynomials specified by \texttt{indexlist}, one specified by an index placed at the preceding position has priority to be selected.
- In general, the result of the function may be different depending on \texttt{indexlist}. However, the result is unique for Groebner bases.
- These functions are useful when a fixed non-distributed polynomial set is used as a set of reducers to compute normal forms of many polynomials. For single computation \texttt{p\_nf} and \texttt{p\_true\_nf} are sufficient.

```
[0] load("gr")$
[64] load("katsura")$
[69] K=katsura(4)$
[70] dp_ord(2)$
```
8.8.16 dp_hm, dp_ht, dp_hc, dp_rest

\texttt{dp_hm(dpol)}
\begin{itemize}
\item Gets the head monomial.
\end{itemize}

\texttt{dp_ht(dpol)}
\begin{itemize}
\item Gets the head term.
\end{itemize}

\texttt{dp_hc(dpol)}
\begin{itemize}
\item Gets the head coefficient.
\end{itemize}

\texttt{dp_rest(dpol)}
\begin{itemize}
\item Gets the remainder of the polynomial where the head monomial is removed.
\end{itemize}

\texttt{return dp_hm(), dp_ht(), dp_rest() : distributed polynomial dp_hc() : number or polynomial}

\texttt{dpoly distributed polynomial}
\begin{itemize}
\item These are used to get various parts of a distributed polynomial.
\item The next equations hold for a distributed polynomial \( p \).
\end{itemize}

\begin{verbatim}
p = dp_hm(p) + dp_rest(p)
dp_hm(p) = dp_hc(p) dp_ht(p)
\end{verbatim}
[91] dp_ht(T);
(1) *
[92] dp_hc(T);
2160
[93] dp_rest(T);
(1512) * <<4,0,1>> + (315) * <<4,0,0>> + (-4000) * <<0,0,2>> + (-2800) * <<0,0,1>>
+ (-490) * <<0,0,0>>

8.8.17 dpTd, dpSugar

dpTd(dpoly)
:: Gets the total degree of the head term.

dpSugar(dpoly)
:: Gets the sugar of a polynomial.

return non-negative integer
dpoly distributed polynomial
onoff flag

- Function dpTd() returns the total degree of the head term, i.e., the sum of all exponent
  of variables in that term.
- Upon creation of a distributed polynomial, an integer called sugar is associated. This
  value is the total degree of the virtually homogenized one of the original polynomial.
- The quantity sugar is an important guide to determine the selection strategy of critical
  pairs in Groebner basis computation.

[74] dpOrd(0) $
[75] X = <<1,2>> + <<0,1>>$
[76] Y = <<1,2>> + <<1,0>>$
[77] Z = X - Y;
(-1) * <<1,0>> + (1) * <<0,1>>
[78] dpSugar(T);
3

8.8.18 dpLcm

dpLcm(dpoly1, dpoly2)
:: Returns the least common multiple of the head terms of the given two polynomials.

return distributed polynomial
dpoly1, dpoly2
distributed polynomial

- Returns the least common multiple of the head terms of the given two polynomials,
  where coefficient is always set to 1.

[100] dpLcm(<1,2,3,4,5>, <<5,4,3,2,1>>);
(1) * <<5,4,3,4,5>>

References
Section 8.8.26 [p_nf p_nf_mod p_true_nf p_true_nf_mod], page 131.
8.8.19 dp_redble

dp_redble(dpoly1, dpoly2)
  :: Checks whether one head term is divisible by the other head term.

return integer
dpoly1, dpoly2
  distributed polynomial

- Returns 1 if the head term of dpoly2 divides the head term of dpoly1; otherwise 0.
- Used for finding candidate terms at reduction of polynomials.

[148] C;
(1) *<<1,1,1,0,0>>+(1) *<<0,1,1,1,0>>+(1) *<<1,0,0,1,1>>
[149] T;
(3) *<<2,1,0,0,0>>+(3) *<<1,2,0,0,0>>+(1) *<<0,3,0,0,0>>+(6) *<<1,1,1,0,0>>
[150] for ( T; T = dp_rest(T)) print(dp_redble(T,0)); 0 0 0 1

References
  Section 8.8.24 [dp_red dp_red_mod], page 130.

8.8.20 dp_subd

dp_subd(dpoly1, dpoly2)
  :: Returns the quotient monomial of the head terms.

return distributed polynomial
dpoly1, dpoly2
  distributed polynomial

- Gets dp_ht(dpoly1)/dp_ht(dpoly2). The coefficient of the result is always set to 1.
- Divisibility assumed.

[162] dp_subd(<<1,2,3,4,5>>,<<1,1,2,3,4>>);
(1) *<<0,1,1,1,1>>

References
  Section 8.8.24 [dp_red dp_red_mod], page 130.

8.8.21 dp_vtoe, dp_etov

dp_vtoe(vect)
  :: Converts an exponent vector into a term.

dp_etov(dpoly)
  :: Convert the head term of a distributed polynomial into an exponent vector.

return dp_vtoe : distributed polynomial, dp_etov : vector
vect vector
dpoly distributed polynomial
- dp_vtoe() generates a term whose exponent vector is vect.
- dp_etov() generates a vector which is the exponent vector of the head term of dpoly.

[211] x<<1,2,3>>;
(1)*<<1,2,3>>
[212] v=dp_etov(x);
[1 2 3 ]
[213] v[2]++$
[214] y=dp_vtoe(v);
(1)*<<1,2,4>>

8.8.22 dp_mbase
dp_mbase(dplist)
:: Computes the monomial basis
return list of distributed polynomial
dplist list of distributed polynomial
- Assuming that dplist is a list of distributed polynomials which is a Groebner basis with respect to the current ordering type and that the ideal I generated by dplist in K[X] is zero-dimensional, this function computes the monomial basis of a finite dimensional K-vector space K[X]/I.
- The number of elements in the monomial basis is equal to the K-dimension of K[X]/I.

[215] k=katsura(5)$
[216] v=[u5,u4,u3,u2,u1,u0]$
[217] g0=gr(k,v,0)$
[218] h=map(dp_ptod,g0,v)$
[219] map(dp_ptod,dp_mbase(h),v)$
[u0^5,u4*u0^3,u3*u0^3,u2*u0^3,u1*u0^3,u0^4,u3^2*u0,u2*u3*u0,u1*u3*u0,
 u1*u2*u0,u1^2*u0,u4*u0^2,u3*u0^2,u2*u0^2,u1*u0^2,u0^3,u3^2,u2*u3,u1*u3,
 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0,1]

References
Section 8.8.1 [gr hgr gr_mod], page 115.

8.8.23 dp_mag
dp_mag(p)
:: Computes the sum of bit lengths of coefficients of a distributed polynomial.
return integer
p distributed polynomial
- This function computes the sum of bit lengths of coefficients of a distributed polynomial p. If a coefficient is non integral, the sum of bit lengths of the numerator and the denominator is taken.
• This is a measure of the size of a polynomial. Especially for zero-dimensional system
coefficient swells are often serious and the returned value is useful to detect such swells.

• If ShowMag and Print for dp_gr_flags() are on, values of dp_mag() for intermediate
basis elements are shown.

\[
\begin{align*}
\text{[221]} \ & x = \text{dp_pzod}((x+2*y)^10,[x,y]) \\
\text{[222]} \ & \text{dp_mag}(x);
\end{align*}
\]

115

References
Section 8.8.8 [dp_gr_flags dp_gr_print], page 121.

8.8.24 dp_red, dp_red_mod
dp_red(dpoly1,dpoly2,dpoly3)
dp_red_mod(dpoly1,dpoly2,dpoly3,mod)
:: Single reduction operation

\begin{align*}
\text{return} \ & \text{list} \\
\text{dpoly1, dpoly2, dpoly3} & \text{distributed polynomial} \\
\text{vlist} & \text{list} \\
\text{mod} & \text{prime}
\end{align*}

• Reduces a distributed polynomial, \(dpoly1 + dpoly2\), by \(dpoly3\) for single time.

• An input for dp_red_mod() must be converted into a distributed polynomial with
coefficients in a finite field.

• This implies that the divisibility of the head term of \(dpoly2\) by the head term of \(dpoly3\)
is assumed.

• When integral coefficients, computation is so carefully performed that no rational
operations appear in the reduction procedure. It is computed for integers \(a\) and \(b\), and a
term \(t\) as: \(a(dpoly1 + dpoly2 - bt dpoly3)\).

• The result is a list \([a dpoly1,a dpoly2 - bt dpoly3]\).

\[
\begin{align*}
\text{[157]} \ & D = (3) \times<<2,1,0,0,0>>+(3) \times<<1,2,0,0,0>>+(1) \times<<0,3,0,0,0>>; \\
\text{[158]} \ & N = (6) \times<<1,1,0,0,0>>; \\
\text{[159]} \ & C = 12 \times<<1,1,1,0,0>>+(1) \times<<0,1,1,1,0>>+(1) \times<<1,1,0,1,0>>; \\
\text{[160]} \ & \text{dp_red}(D,R,C); \\
\text{[161]} \ & \text{[(6) \times<<2,1,0,0,0>>+(6) \times<<1,2,0,0,0>>+(2) \times<<0,3,0,0,0>>,(-1) \times<<0,1,1,1,0>>}
\end{align*}
\]

References
Section 8.8.12 [dp_mod dp_rat], page 123.
8.8.25 dp_sp, dp_sp_mod

dp_sp(dpoly1, dpoly2)
dp_sp_mod(dpoly1, dpoly2, mod)
:: Computation of an S-polynomial
return distributed polynomial

dpoly1, dpoly2
distributed polynomial
mod prime

- This function computes the S-polynomial of dpoly1 and dpoly2.
- Inputs of dp_sp_mod() must be polynomials with coefficients in a finite field.
- The result may be multiplied by a constant in the ground field in order to make the result integral.

[227] X=dp_ptod(x^2*y+x*y, [x, y]);
   (1)<<<2,1>>+(1)<<<1,1>>
[228] Y=dp_ptod(x*y^2+x*y, [x, y]);
   (1)<<<1,2>>+(1)<<<1,1>>
[229] dp_sp(x, y);
   (-1)<<<2,1>>+(1)<<<1,2>>

References
Section 8.8.12 [dp_mod dp_rat], page 123.

8.8.26 p_nf, p_nf_mod, p_true_nf, p_true_nf_mod

p_nf(poly, plist, vlist, order)
p_nf_mod(poly, plist, vlist, order, mod)
:: Computes the normal form of the given polynomial. (The result may be multiplied by a constant.)

p_true_nf(poly, plist, vlist, order)
p_true_nf_mod(poly, plist, vlist, order, mod)
:: Computes the normal form of the given polynomial. (The result is returned as a form of [numerator, denominator])

return p_nf : polynomial, p_true_nf : list

poly polynomial
plist, vlist list
order number, list or matrix
mod prime

- Defined in the package ‘gr’.
- Obtains the normal form of a polynomial by a polynomial list.
- These are interfaces to dp_nf(), dp_true_nf(), dp_nf_mod(), dp_true_nf_mod
The polynomial \( poly \) and the polynomials in \( plist \) is converted, according to the variable ordering \( vlist \) and type of term ordering \( otype \), into their distributed polynomial counterparts and passed to \( dp\_nf() \).

- \( dp\_nf() \), \( dp\_true\_nf() \), \( dp\_nf\_mod() \) and \( dp\_true\_nf\_mod() \) is called with value 1 for \textit{fullreduce}.
- The result is converted back into an ordinary polynomial.
- As for \( p\_true\_nf() \), \( p\_true\_nf\_mod() \) refer to \( dp\_true\_nf() \) and \( dp\_true\_nf\_mod() \).

```
[79] K = katsura(5)$
[80] V = [u5, u4, u3, u2, u1, u0]$
[81] G = hgr(K, V, 2)$
[82] p_nf(K[1], G, V, 2);
 0
[83] L = p_true_nf(K[1] + 1, G, V, 2);
[-1503 ..., -1503 ...]
[84] L[0]/L[1];
 1
```

References
Section 8.8.10 \[dp\_ptod\], page 122, Section 8.8.11 \[dp\_dtod\], page 123, Section 8.8.9 \[dp\_ord\], page 121, Section 8.8.15 \[dp\_nf\ \ dp\_nf\_mod\ \ dp\_true\_nf\ \ dp\_true\_nf\_mod\], page 125.

### 8.8.27 \( p\_terms \)

\[ p\_terms(poly, vlist, order) \]

:: Monomials appearing in the given polynomial is collected into a list.

return list
poly polynomial
vlist list
order number, list or matrix

- Defined in the package ‘\texttt{gr}’.
- This returns a list which contains all non-zero monomials in the given polynomial. The monomials are ordered according to the current type of term ordering and \( vlist \).
- Since polynomials in a Groebner base often have very large coefficients, examining a polynomial as it is may sometimes be difficult to perform. For such a case, this function enables to examine which term is really exists.

```
[233] G = gr(katsura(5), [u5, u4, u3, u2, u1, u0], 2)$
[234] p_terms(G[0], [u5, u4, u3, u2, u1, u0], 2);
 [u5, u0^31, u0^30, u0^29, u0^28, u0^27, u0^26, u0^25, u0^24, u0^23, u0^22, u0^21, u0^20,
 u0^19, u0^18, u0^17, u0^16, u0^15, u0^14, u0^13, u0^12, u0^11, u0^10, u0^9, u0^8, u0^7,
 u0^6, u0^5, u0^4, u0^3, u0^2, u0, 1]
```

### 8.8.28 \( gb\_comp \)
\textbf{gb\_comp}(\textit{plist1, plist2})
\hspace{1em}:: Checks whether two polynomial lists are equal or not as a set
\textbf{return} 0 or 1
\textit{plist1, plist2}
- This function checks whether \textit{plist1} and \textit{plist2} are equal or not as a set.
- For the same input and the same term ordering different functions for Groebner basis
  computations may produce different outputs as lists. This function compares such lists
  whether they are equal as a generating set of an ideal.

[243] C=cyclic(6)$
[244] V=[c0,c1,c2,c3,c4,c5]$
[245] G0=gr(C,V,0)$
[246] G=tolex(G0,V,0,V)$
[247] GG=lex\_t1(C,V,0,V,0)$
[248] gb\_comp(G,GG);
1

\textbf{8.8.29 katsura, hkatsura, cyclic, hcyclic}

\textbf{katsura}(n)
\textbf{hkatsura}(n)
\textbf{cyclic}(n)
\textbf{hcyclic}(n)
\hspace{1em}:: Generates a polynomial list of standard benchmark.

\textbf{return} \textbf{list}
\textit{n} \hspace{1em} \textbf{integer}
- Function \textit{katsura()} is defined in ‘katsura’, and function \textit{cyclic()} in ‘cyclic’.
- These functions generate a series of polynomial sets, respectively, which are often used
  for testing and bench marking: katsura, cyclic and their homogenized versions.
- Polynomial set cyclic is sometimes called by other name: Arnborg, Lazard, and
  Davenport.

[74] load("katsura")$
[79] load("cyclic")$
[89] katsura(5);
[u0+2*u4+2*u3+2*u2+2*u1+2*u5-1,2*u4*u0-u4+2*u1*u3+u2+2*u5*u1,
  2*u3*u0+2*u1*u4-u3+(2*u1+2*u5)*u2,2*u2*u0+2*u2*u4+(2*u1+2*u5)*u3-u2+u1^2,
  2*u1*u0+(2*u3+2*u5)*u4+2*u2*u3+2*u1*u2-u1,
  u0^2-u0+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2]$
[90] hkatsura(5);
[-t+u0+2*u4+2*u3+2*u2+2*u1+2*u5,
  -u4*t+2*u4*u0+2*u1*u3+u2+2*u5+u1,-u3*t+2*u3*u0+2*u1*u4+(2*u1+2*u5)*u2,
  -u2*t+2*u2*u0+2*u2*u4+(2*u1+2*u5)*u3+u1^2,
  -u1*t+2*u1*u0+(2*u3+2*u5)*u4+2*u2*u3+2*u1*u2,
  -u0*t+u0^2+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2]$
[91] cyclic(6);
[c5*c4*c3*c2*c1*c0-1,
(((c4+c5)*c3*c5*c4)*c2*c5*c4*c3)*c1+c5*c4*c3*c2)*c0+c5*c4*c3*c2*c1,
(((c3+c5)*c2*c5*c4)*c1+c5*c4*c3)*c0+c4*c3*c2*c1+c5*c4*c3*c2,
((c2+c5)*c1+c5*c4)*c0+c3*c2*c1+c4*c3*c2+5*c4*c3,
(c1+c5)*c0+c2*c1+c3*c2+c4*c3*c5*c4,c0+c1+c2+c3+c4+c5]
[92] hycllic(6);
[-c+5*c4*c3*c2*c1*c0,
(((c4+c5)*c3*c5*c4)*c2+c5*c4+c3)*c1+c5*c4*c3*c2)*c0+c5*c4*c3*c2*c1,
(((c3+c5)*c2+c5*c4)*c1+c5*c4*c3)*c0+c4*c3*c2*c1+c5*c4*c3*c2,
((c2+c5)*c1+c5*c4)*c0+c3*c2*c1+c4*c3*c2+5*c4*c3,
(c1+c5)*c0+c2*c1+c3*c2+c4*c3*c5*c4,c0+c1+c2+c3+c4+c5]

References
Section 8.8.11 [dp_dtop], page 123.

8.8.30 primadec, primedec

primadec(plist, vlist)
primedec(plist, vlist)
:: Computes decompositions of ideals.

return
plist list of polynomials
vlist list of variables

- Function primadec() and primedec are defined in 'primdec'.
- primadec(), primedec() are the function for primary ideal decomposition and prime
decomposition of the radical over the rationals respectively.
- The arguments are a list of polynomials and a list of variables. These functions accept
ideals with rational function coefficients only.
- primadec returns the list of pair lists consisting a primary component and its associated
prime.
- primedec returns the list of prime components.
- Each component is a Groebner basis and the corresponding term order is indicated by
the global variables PRIMAORD, PRIMEORD respectively.
- primadec implements the primary decomposition algorithm in [Shimoyama, Yokoyama].
- If one only wants to know the prime components of an ideal, then use primedec because
primadec may need additional costs if an input ideal is not radical.

[84] load("primdec")$
[102] primadec([p*q*x-q^2*y^2+q^2*y,-p^2*x^2+p^2*x+p*q*y,
(q^3*y^4-2*q^3*y^3+q^3*y-2)*x-q^3*y^4+q^3*y^3,
-q^3*y^4+2*q^3*y^3+(-q^3*p^3)2*y^2],[p,q,x,y]);
[[y,x],[y,p],[x,q],[q,p],[x-1,q],[y-1,p],[(-y-1)*x-y,q^2-2*q*y-p]q]
[103] primadec([x,z*y,w*y^2,w^2*y-z^3,y^3],[x,y,z,w]);
[[[z^2*y^2,w^2*y-z^3],[y,z],[y,z],[z,y],[w,z,y,x]]]

References
Section 6.3.14 [fctr sqfr], page 49, Section 8.5 [Setting term orderings],
page 112.
9 Algebraic numbers

9.1 Representation of algebraic numbers

In Asir algebraic number fields are not defined as independent objects. Instead, individual algebraic numbers are defined by some means. In Asir an algebraic number field is defined virtually as a number field obtained by adjoining a finite number of algebraic numbers to the rational number field.

A new algebraic number is introduced in Asir in such a way where it is defined as a root of an uni-variate polynomial whose coefficients include already defined algebraic numbers as well as rational numbers. We shall call such a newly defined algebraic number a root. Also, we call such an uni-variate polynomial the defining polynomial of that root.

\[
[0] \; A0=newalg(x^2+1);
[#0]
[1] \; A1=newalg(x^3+A0*x+A0);
[#1]
[2] \; [\text{type}(A0),\text{ntype}(A0)];
[1,2]
\]

In this example, the algebraic number assigned to \( A0 \) is defined as a root of a polynomial \( x^2+1 \); that of \( A1 \) is defined as a root of a polynomial \( x^3+A0*x+A0 \), which you see contains the previously defined root \( A0 \) in its coefficients.

The argument to \texttt{newalg()} , i.e., the defining polynomial, must satisfy the following conditions.

1. A defining polynomial must be an uni-variate polynomial.
2. A defining polynomial is used to simplify expressions containing that algebraic number. The procedure of such simplification is performed by an internal routine similar to the built-in function \texttt{srem()} , where the defining polynomial is used for the second argument, the divisor. By this reason, the leading coefficient of the defining polynomial must be a rational number (must not be an algebraic number.)
3. Every coefficients of a defining polynomial must be a ‘(multi-variate) polynomial’ in already defined root’s. Here, ‘(multi-variate) polynomial’ means a mathematical concept, not the object type ‘polynomial’ in Asir.
4. A defining polynomial must be irreducible over the field that is obtained by adjoining all root’s contained in its coefficients to the rational number field.

Only the first two conditions (1 and 2) are checked by function \texttt{newalg()} . Among all, it should be emphasized that no check is done for the irreducibility at all. The reason is that the irreducibility test requires enormously much computation time. You are trusted whether to check it at your own risk.

Once a root has been defined by \texttt{newalg()} function, it is given the type identifier for a number, and furthermore, the sub-type identifier for an algebraic number. (See Section 6.8.1 [type], page 68, Section 6.8.2 [ntype], page 68.) Also, any rational combination of rational numbers and root’s is an algebraic number.

\[
[87] \; N=(A0^2+A1)/(A1^2-A0-1);
(\#1*#0^2)/(\#1^2-\#0-1))
\]
As you see it in the example, a root is displayed as \#n. But, you cannot input that root in its immediate output form. You have to refer to a root by a program variable assigned to the root, or to get it by alg(n) function, or by several other indirect means. A strange use of newalg(), with a same argument polynomial (except for the name of its main variable), will yield the old root instead of a new root though it is apparently inefficient.

The defining polynomial of a root can be obtained by defpoly() function.

Here, you see a strange expression, t\#0 and t\#1. They are a specially indeterminates generated and maintained by Asir internally. Indeterminate t\#0 corresponds to root #0, and t\#0 to #1. These indeterminates also cannot be input directly by a user in their immediate forms. You can get them by several ways: by var() function, or algv(n) function.

9.2 Operations over algebraic numbers

In the previous section, we explained about the representation of algebraic numbers and their defining method. Here, we describe operations on algebraic numbers. Only a few functions are built-in, and almost all functions are provided as user defined functions. The file containing their definitions is ‘sp’, and it is placed under the same directory as ‘gr’ is placed, i.e., the standard library directory of Asir.

Or if you always need them, it is more convenient to include the load commands in ‘\$HOME/.asirrc’.

Like the other numbers, algebraic numbers can get arithmetic operations applied. Simplification, however, by defining polynomials are not automatically performed. It is left to users to simplify their expressions. A fatal error shall result if the denominator expression will be simplified to 0. Therefore, be careful enough when you will create and deal with algebraic numbers which may denominators in their expressions.

Use simpalg() function for simplification of algebraic numbers by defining polynomials.
[50] simpalg(T); 0

Function simpalg() simplifies algebraic numbers which have the same structures as rational expressions in their appearances.

[39] A0=newalg(x^2+1); (#0)
[40] T=(A0^2+A0+1)/(A0+3); ((#0^2+#0+1)/(#0+3))
[41] simpalg(T); (3/10*#0+1/10)
[42] T=1/(A0^2+1); ((1)/(#0^2+1))
[43] simpalg(T);

div : division by 0
stopped in invalgp at line 258 in file "/usr/local/lib/asir/sp"
258 return 1/A;
(debug)

This example shows an error caused by zero division in the course of program execution of simpalg(), which attempted to simplify an algebraic number expression of which the denominator is 0.

Function simpalg() also can take a polynomial as its argument and simplifies algebraic numbers in its coefficients.

[43] simpalg(1/A0*x+1/(A0+1));
(-#0)*x+(-1/2*#0+1/2)

Thus, you can operate in polynomials which contain algebraic numbers as you do usually in ordinary polynomials, except for proper simplification by simpalg(). You may sometimes feel needs to convert root's into indeterminates, especially when you are working for norm computation in algorithms for algebraic factorization. Function algptorat() is used for such cases.

[83] A0=newalg(x^2+1);
(#0)
[84] A1=newalg(x^3+A0*x+A0);
(#1)
[85] T=(2*A0+A1*A0+A1^2)*x+(1+A1)/(2+A0);
(#1^2+#0*1+2*#0)*x+((#1+1)/(#0+2))
[86] S=algptorat(T);
(((t#0+2)*t#1+2+t#0^2+t#0)*t#1+2*t#0^2+4*t#0)*x+t#1+1)/(t#0+2)
[87] algptorat(coef(T,1));
t#1^2+t#0*t#1+2*t#0

As you see by the example, function algptorat() converts root's, #n, in polynomials and numbers into its associated indeterminates, t#n. As was already mentioned those indeterminates cannot be directly input in their immediate form. The restriction is adopted to avoid the confusion that might happen if the user could input such internally generatable indeterminates.

The associated indeterminate to a root is reversely converted into the root by rattoalgp() function.
[88] rats = rats algp(S, [alg(0)]);
(((#0+2)/(#0+2))*t#1+((#0^2+2*#0)/(#0+2))*t#1+((2*#0^2+4*#0)/(#0+2))*x
+(1)/(#0+2))*t#1+(1)/(#0+2))
[89] rats algp(S, [alg(0), alg(1)]);
(((#0^3+6*#0^2+12*#0+8)*#1^2+((#0^4+6*#0^3+12*#0^2+8*#0)*#1+2*#0^4+12*#0^3+24*#0^2+16*#0)/(#0^3+6*#0^2+12*#0+8))*x+(((#0+2)*#1+#0+2)/(#0^2+4*#0+4))
[90] rats algp(S, [alg(1), alg(0)]);
(((#0+2)*#1+2*(#0^2+2*#0)*#1+2*#0^2+4*#0)/(#0+2))*x+((#1+1)/(#0+2))
[91] simp alg(89);
(#1^2+3*#0+2)*x+((-1/5)*#0+2/5)*#1-1/5*#0+2/5)
[92] simp alg(90);
(#1^2+#0+1)*x+((-1/5)*#0+2/5)*#1-1/5*#0+2/5)

Function rats algp() takes as the second argument a list consisting of root's that you want
to convert, and converts them successively from the left. This example shows that apparent
difference of the results due to the order of such conversion will vanish by simplification
yielding the same result. Functions algp torat() and rats algp() can be conveniently
used for your own simplification.

9.3 Operations for uni-variate polynomials over an algebraic
number field

In the file ‘sp’ are provided functions for uni-variate polynomial factorization and uni-variate
polynomial GCD computation over algebraic numbers, and furthermore, as an application
of them, functions to compute splitting fields of univariate polynomials.

9.3.1 GCD

Greatest common divisors (GCD) over algebraic number fields are computed by cr gcda() function. This function computes GCD by using modular computation and Chinese re-
mainder theorem and it works for the case where the ground field is a multiple extension.

[63] A=new alg(t^9-15*t^6-67*t^4-125);
(#0)
[64] B=new alg(75*s^2+(10*A^7-175*A^4-470*A)*s+3*A^8-45*A^5-261*A^2);
(#1)
[65] P1=75*x^2+(150*B+10*A^7-175*A^4-395*A)*x+(75*B^2+(10*A^7-175*A^4-395*A)*B
+13*A^8-220*A^5-581*A^2)$
[66] P2=x^2+A*x+A^2$
[67] cr gcda(P1,P2);
27*x+((-#0^6-19*#0^3-65)*#1-#0^7+19*#0^4+38*#0)

9.3.2 Square-free factorization and Factorization

For square-free factorization (of uni-variate polynomials over algebraic number fields), we
employ the most fundamental algorithm which begins first to compute GCD of a polynomial
and its derivative. The function to do this factorization is asq().

[116] A=new alg(x^2+x+1);
(#4)
[117] T=simp alg((x+A+1)*(x^2-2*A-3)^2*(x^3-x-A)-2);
\[ x^{11} + (4^1 + 1)x^{10} - (4^1 - 8)x^9 + (10^1 - 4)x^8 + (16^1 + 20)x^7 + (24^1 - 6)x^6 + (-29^1 + 31)x^5 + (-15^1 + 29)x^4 + (38^1 + 29)x^3 + (4^23)x^2 + (-21^1 - 7)x + (3^1 + 8) \]

\[ \text{[118] asq(T); } \]
\[ [[x^5 + (-2^1 + 4)x^3 + (-4)x^2 + (2^1 + 3)x + (4^1 + 1), 2], [x + (4^1 + 1), 1]] \]

Like factorization over the rational number field, the result is presented, commonly to both square-free factorization and factorization, as a list whose elements are pairs (list of two elements) in the form [\text{factor, multiplicity}] without the constant multiple part.

Here, it should be noticed that the products of all factors of the result may DIFFER from the input polynomial by a constant. The reason is that the factors are normalized so that they have integral leading coefficients for the sake of readability.

This incongruity may happen to square-free factorization and factorization commonly.

The algorithm employed for factorization over algebraic number fields is an improvement of the norm method by Trager. It is especially very effective to factorize a polynomial over a field obtained by adjoining some of its root's to the base field.

\[ \text{[119] af(T, [A]); } \]
\[ [[x^3 - x + (-4), 2], [x^2 + (-2^1 + 3), 2], [x + (4^1 + 1), 1]] \]

The function takes two arguments: The second argument is a list of root's. Factorization is performed over a field obtained by adjoining the root's to the rational number field. It is important to keep in mind that the ordering of the root's must obey a restriction: Last defined should come first. The automatic re-ordering is not done. It should be done by yourself.

The efficiency of factorization via norm depends on the efficiency of the norm computation and univariate factorization over the rationals. Especially the latter often causes combinatorial explosion and the computation will stick in such a case.

\[ \text{[120] B=newalg(x^2 - 2*A - 3); } \]
\[ (#5) \]
\[ \text{[121] af(T, [B, A]); } \]
\[ [[x + (#5), 2], [x^3 - x + (-4), 2], [x + (-5), 2], [x + (4^1 + 1), 1]] \]

9.3.3 Splitting fields

This operation may be somewhat unusual and for specific interest. (Galois Group for example.) Procedurally, however, it is easy to obtain the splitting field of a polynomial by repeated application of algebraic factorization described in the previous section. The function is \text{sp()}.  

\[ \text{[103] sp(x^5 - 2);} \]
\[ [[x + (-1), 2]*x + (0^1 + 3)*t^1 + 0^4*t^1 + 2*t^1 + 2*t^0], 2]*x + (-0^4*t^1 + 1), 2]*x + (-0^3*t^1 + 1), x + (-0)], [[[1, t^1 + 4 + t^0 * t^1 + 3 + t^0 * 2 + t^1 + 2 + t^0 * 3 * t^1 + t^0 * 4], \]
\[ ([#0], t^0 * 5 - 2)) ] \]

Function \text{sp()} takes only one argument. The result is a list of two element: The first element is a list of linear factors, and the second one is a list whose elements are pairs (list of two elements) in the form [\text{root, algptorat(definition polynomial)}]. The second element, a list of pairs of form [\text{root, algptorat(definition polynomial)}], corresponds to the root's which are adjoined to eventually obtain the splitting field. They are listed in the reverse order
of adjoining. Each of the defining polynomials in the list is, of course, guaranteed to be irreducible over the field obtained by adjoining all root’s defined before it.

The first element of the result, a list of linear factors, contains all irreducible factors of the input polynomial over the field obtained by adjoining all root’s in the second element of the result. Because such field is the splitting field of the input polynomial, factors in the result are all linear as the consequence.

Similarly to function af(), the product of all resulting factors may yield a polynomial which differs by a constant.

9.4 Summary of functions for algebraic numbers

9.4.1 newalg

newalg(defpoly)
:: Creates a new root.
return algebraic number (root)
defpoly polynomial
  • Creates a new root (algebraic number) with its defining polynomial defpoly.
  • For constraints on defpoly, See Section 9.1 [Representation of algebraic numbers], page 136.

[0] A0=newalg(x^2-2);
(#0)

Reference
Section 9.4.2 [defpoly], page 141

9.4.2 defpoly

defpoly(alg)
:: Returns the defining polynomial of root alg.
return polynomial
alg algebraic number (root)
  • Returns the defining polynomial of root alg.
  • If the argument alg, a root, is #n, then the main variable of its defining polynomial is t#n.

[1] defpoly(A0);
t#0^2-2

Reference
Section 9.4.1 [newalg], page 141, Section 9.4.3 [alg], page 142, Section 9.4.4 [algv], page 142
9.4.3 \texttt{alg}

\texttt{alg(i)} :: Returns a \texttt{root} which correspond to the index \( i \).

\textbf{return} algebraic number (\texttt{root})

\( i \) integer

- Returns \#\texttt{i}, a \texttt{root}.
- Because \#\texttt{i} cannot be input directly, this function provides an alternative way: input \texttt{alg(i)}.
  
  [2] \texttt{x+\#0;}
  \texttt{syntax error}
  \texttt{0}
  [3] \texttt{alg(0);}
  \texttt{(\#0)}

\textbf{Reference}
Section 9.4.1 [\texttt{newalg}], page 141, Section 9.4.4 [\texttt{algv}], page 142

9.4.4 \texttt{algv}

\texttt{algv(i)} :: Returns the associated indeterminate with \texttt{alg(i)}.

\textbf{return} polynomial

\( i \) integer

- Returns an indeterminate \( t\#i\)
- Since indeterminate \( t\#i \) cannot be input directly, it is input by \texttt{algv(i)}.
  
  [4] \texttt{var(defpoly(A0));}
  \texttt{t\#0}
  [5] \texttt{t\#0;}
  \texttt{syntax error}
  \texttt{0}
  [6] \texttt{algv(0);}
  \texttt{t\#0}

\textbf{Reference}
Section 9.4.1 [\texttt{newalg}], page 141, Section 9.4.2 [\texttt{defpoly}], page 141, Section 9.4.3 [\texttt{alg}], page 142

9.4.5 \texttt{simpalg}

\texttt{simpalg(rat)} :: Simplifies algebraic numbers in a rational expression.

\textbf{return} rational expression

\( \texttt{rat} \) rational expression

- Defined in the file ‘\texttt{sp}’.
- Simplifies algebraic numbers contained in numbers, polynomials, and rational expressions by the defining polynomials of \texttt{root}’s contained in them.
• If the argument is a number having the denominator, it is rationalized and the result is a polynomial in root’s.
• If the argument is a polynomial, each coefficient is simplified.
• If the argument is a rational expression, its denominator and numerator are simplified as a polynomial.

```
[7] simpal((1+A0)/(1-A0));
simplg undefined
return to toplevel
[7] load("sp")$
[46] simpal((1+A0)/(1-A0));
(-2*#0-3)
[47] simpal((2-A0)/(2+A0)*x^2-1/(3+A0));
(-2*#0+3)*x^2+(1/7*#0-3/7)
[48] simpal((x+1/(A0-1))/(x-1/(A0+1)));
(x+(#0+1))/(x-(-#0+1))
```

### 9.4.6 algptorat

algptorat(poly)
:: Substitutes the associated indeterminate for every root

**return** polynomial

**poly** polynomial

- Defined in the file ‘sp’.
- Substitutes the associated indeterminate t#n for every root #n in a polynomial.

```
[49] algptorat((-2*alg(0)+3)*x^2+(1/7*alg(0)-3/7));
(-2*t#0+3)*x^2+1/7*t#0-3/7
```

**Reference**
Section 9.4.2 [defpoly], page 141, Section 9.4.4 [algv], page 142

### 9.4.7 rattoalgp

rattoalgp(poly,alglist)
:: Substitutes a root for the associated indeterminate with the root.

**return** polynomial

**poly** polynomial

**alglist** list

- Defined in the file ‘sp’.
- The second argument is a list of root’s. Function rattoalgp() substitutes a root for the associated indeterminate of the root.

```
[51] rattoalgp((-2*alg(0)+3)*x^2+(1/7*alg(0)-3/7), [alg(0)]);
(-2*#0+3)*x^2+(1/7*#0-3/7)
```

**Reference**
Section 9.4.3 [alg], page 142, Section 9.4.4 [algv], page 142
9.4.8 \texttt{cr\_gcd}\texttt{a}

\texttt{cr\_gcd\texttt{a}(poly1,poly2)}
:: \texttt{GCD} of two uni-variate polynomials over an algebraic number field.

\texttt{return \ polynomial}

\texttt{poly1, poly2}
:: \texttt{polynomial}

\begin{itemize}
  \item Defined in the file \texttt{sp}.
  \item Finds the \texttt{GCD} of two uni-variate polynomials.
  \begin{verbatim}
  [76] X=x^6+3*x^5+6*x^4+x^3-3*x^2+12*x+16$
  [77] Y=x^6+6*x^5+24*x^4+8*x^3-48*x^2+384*x+1024$
  [78] A=newal\texttt{g}(X);
   (#0)
  [79] cr\_gcd\texttt{a}(X,subst(Y,x+X));
   x+(-#0)
  \end{verbatim}
\end{itemize}

Reference
Section 8.8.1 \texttt{[gr hgr gr\_mod]}, page 115, Section 9.4.10 \texttt{[asq af af\_noal\texttt{g}]}, page 145

9.4.9 \texttt{sp\_norm}

\texttt{sp\_norm(alg,\texttt{var},\texttt{poly},\texttt{algl\texttt{ist}})}
:: Norm computation over an algebraic number field.

\texttt{return \ polynomial}

\texttt{\texttt{var}}
:: The main variable of \texttt{\texttt{poly}}

\texttt{\texttt{poly}}
:: uni-variate polynomial

\texttt{\texttt{alg}}
:: root

\texttt{\texttt{algl\texttt{ist}}}
:: root list

\begin{itemize}
  \item Defined in the file \texttt{sp}.
  \item Computes the norm of \texttt{\texttt{poly}} with respect to \texttt{\texttt{alg}}. Namely, if we write \texttt{K=Q\{alglist \ \{\texttt{alg}\}}}\texttt{\}, The function returns a product of all conjugates of \texttt{\texttt{poly}}, where the conjugate of polynomial \texttt{\texttt{poly}} is a polynomial in which the algebraic number \texttt{\texttt{alg}} is substituted for its conjugate over \texttt{\texttt{K}}.
  \item The result is a polynomial over \texttt{\texttt{K}}.
  \item The method of computation depends on the input. Currently direct computation of resultant and Chinese remainder theorem are used but the selection is not necessarily optimal. By setting the global variable \texttt{USE\_RES} to 1, the builtin function \texttt{res()} is always used.
\end{itemize}

\begin{verbatim}
[0] load("sp")$
[39] A0=newal\texttt{g}(x^2+1)$
[40] A1=newal\texttt{g}(x^2+A0)$
[41] sp\_norm(A1,x,x^3+A0*x+A1,[A1,A0]);
\end{verbatim}
\[ x^6 + (2*#0)*x^4 + (#0^2)*x^2 + (#0) \]
\[ \text{sp\_norm}(A0,x,0@[A0]); \]
\[ x^12 + 2*x^8 + 5*x^4 + 1 \]

Reference
Section 6.3.13 [res], page 49, Section 9.4.10 [asq af \texttt{af\_noalg}], page 145

9.4.10 \texttt{asq, af, af\_noalg}

\texttt{asq(poly)} :: Square-free factorization of polynomial \textit{poly} over an algebraic number field.

\texttt{af(poly,alglist)}

\texttt{af\_noalg(poly,defpolylist)}

:: Factorization of polynomial \textit{poly} over an algebraic number field.

\texttt{return list}

\texttt{poly polynomial}

\texttt{alglist root list}

\texttt{defpolylist root list of pairs of an indeterminate and a polynomial}

- Both defined in the file ‘sp’.
- If the inputs contain no \texttt{root’s}, these functions run fast since they invoke functions over
  the integers. In contrast to this, if the inputs contain \texttt{root’s}, they sometimes take a
  long time, since \texttt{cr\_gcd()} is invoked.
- Function \texttt{af()} requires the specification of base field, i.e., list of \texttt{root’s} for its second
  argument.
- In the second argument \texttt{alglist, root} defined last must come first.
- In \texttt{af(F,AL)}, \texttt{AL} denotes a list of \texttt{roots} and it represents an algebraic number field. In
  \texttt{AL=\{An,...,A1\}} each \texttt{Ak} should be defined as a root of a defining polynomial whose
  coefficients are in \(\mathbb{Q}(A(k+1),...,An)\).

[1] A1 = newalg(x\^2+1);
[2] A2 = newalg(x\^2+A1);
[3] A3 = newalg(x\^2+A2*x+A1);
[4] af(x\^2+A2*x*A1,[A2,A1]);
[[x\^2+(#1)*x+(#0),1]]

To call \texttt{sp\_noalg}, one should replace each algebraic number \textit{ai} in \textit{poly} with an
indeterminate \textit{vi}. \texttt{defpolylist} is a list \([\text{[vn, dn(vn,...,vi)]},...,\text{[v1, d(v1)]}]\]. In this expression
\(d(vi,...,v1)\) is a defining polynomial of \textit{ai} represented as a multivariate polynomial.

[1] \texttt{af\_noalg(x\^2+a2*x+a1,[[a2,a2\^2+a1],[a1,a1\^2+1]]);
[[x\^2+a2*x+a1,1]]}

- The result is a list, as a result of usual factorization, whose elements is of the form
  \texttt{[factor, multiplicity]}. In the result of \texttt{af\_noalg}, algebraic numbers in factor are replaced
  by the indeterminates according to \texttt{defpolylist}.
- The product of all factors with multiplicities counted may differ from the input polynomial by a constant.
[98] A = newalg(t^2-2);
(0)
[99] asq(-x^4+6*x^3+(2*alg(0)-9)*x^2+(-6*alg(0))*x-2);
[[x^2-3*x+(-1,2)]
[100] af(-x^2+3*x+alg(0),[alg(0)]);
[[x+(-1,1),[-x+(-1,2)],1]]
[101] af_noalg(-x^2+3*x+a,[[a,x^2-2]]);
[[x+a-1,1],[-x+a+2,1]]

Reference
Section 9.4.8 [cr_gcd], page 144, Section 6.3.14 [fctr sqfr], page 49

9.4.11 sp, sp_noalg

sp(poly)
sp_noalg(poly)
:: Finds the splitting field of polynomial poly and splits.

return list

poly polynomial

- Defined in the file ‘sp’.
- Finds the splitting field of poly, an uni-variate polynomial over with rational coefficients, and splits it into its linear factors over the field.
- The result consists of a two element list: The first element is the list of all linear factors of poly; the second element is a list which represents the successive extension of the field. In the result of sp_noalg all the algebraic numbers are replaced by the special indeterminate associated with it, that is t#i for #i. By this operation the result of sp_noalg is a list containing only integral polynomials.
- The splitting field is represented as a list of pairs of form [root, algptorat(defpoly(root))].
  In more detail, the list is interpreted as a representation of successive extension obtained by adjoining root’s to the rational number field. Adjoining is performed from the right root to the left.
- sp() invokes sp_norm() internally. Computation of norm is done by several methods according to the situation but the algorithm selection is not always optimal and a simple resultant computation is often superior to the other methods. By setting the global variable USE_RES to 1, the builtin function res() is always used.

[101] I=sp(x^9-54);
[[x+(-2),-54*x+(-1^6*2^4+54*2),54*2+(-1^8*2^2)],
-54*2+(-1^5*2^5+1^8*2^2),-54*2+(-1^7*2^3-54*1),
54*2+(-1^7*2^3),x+(-1)],[(2),2^6+1^3*2^3=1^6],[(1),1^9-54]]]
[102] for(I=0,M=1;I<9;I++)M*=L[0][I];
[111] M=simpalg(M);
-138925209984*x^9+72301961339136
[112] ptozp(M);
-x^9+54

Reference
Section 9.4.10 [asq af af_noalg], page 145, Section 9.4.2 [defpoly], page 141,
Section 9.4.6 [algptorat], page 143, Section 9.4.9 [sp_norm], page 144.
10 Finite fields

10.1 Representation of finite fields

On Asir $GF(p)$ and $GF(2^n)$ can be defined, where $GF(p)$ is a finite prime field of characteristic $p$ and $GF(2^n)$ is a finite field of characteristic 2. These are all defined by `setmod_ff()`.

1. `P=pari(nextprime,2^50);`
2. `1125899906842679`
3. `setmod_ff(P);`
4. `1125899906842679`
5. `field_type_ff();`
6. `1`
7. `load("fff");`
8. `1`
9. `F=defpoly_mod2(50);`
10. `x^50+x^4+x^3+x^2+1`
11. `setmod_ff(F);`
12. `x^50+x^4+x^3+x^2+1`
13. `field_type_ff();`
14. `2`

If $p$ is a positive integer, `setmod_ff(p)` sets $GF(p)$ as the current base field. If $f$ is a univariate polynomial of degree $n$, `setmod_ff(f)` sets $GF(2^n)$ as the current base field. $GF(2^n)$ is represented as an algebraic extension of $GF(2)$ with the defining polynomial $f \mod 2$. In both cases the primality check of the argument is not done and the caller is responsible for it.

Correctly speaking there is no actual object corresponding to a 'base field'. Setting a base field means that operations on elements of finite fields are done according to the arithmetics of the base field. Thus, if operands of an arithmetic operation are both rational numbers, then the result is also a rational number. However, if one of the operands is in a finite field, then the other is automatically regarded as in the same finite field and the operation is done in the finite field.

A non zero element of a finite field belongs to the number and has object identifier 1. Its number identifier is 6 if the finite field is $GF(p)$, 7 if it is $GF(2^n)$.

There are several methods to input an element of a finite field. An element of $GF(p)$ can be input by `simp_ff()`.

1. `P=pari(nextprime,2^50);`
2. `1125899906842679`
3. `setmod_ff(P);`
4. `1125899906842679`
5. `A=simp_ff(2^100);`
6. `3025`
7. `ntype(00);`
8. `6`

In the case of $GF(2^n)$ the following methods are available.

1. `setmod_ff(x^50+x^4+x^3+x^2+1);`
\[ x^{50} + x^4 + x^3 + x^2 + 1 \]

[1] \( A = \emptyset \);
(0)
[2] ptogf2n(\( x^{50} + 1 \));
(0\( ^{50} + 1 \))
[3] simp_ff(\( \emptyset \));
(0\( ^4 + 0\( ^{3} + 0\( ^{-2} \))
[4] ntogf2n(2\( ^{-10} - 1 \));
(0\( ^{-9} + 0\( ^{8} + 0\( ^{-7} + 0\( ^{-6} + 0\( ^{-5} + 0\( ^{-4} + 0\( ^{-3} + 0\( ^{-2} + 0\( ^{-1} \))

Elements of finite fields are numbers and one can apply field arithmetics to them. \( \emptyset \) is a generator of \( GF(2^n) \) over \( GF(2) \). See Section 3.2 [Types of numbers], page 13.

10.2 Univariate polynomials on finite fields

In ‘\( fff \)’ square-free factorization, DDF (distinct degree factorization), irreducible factorization and primality check are implemented for univariate polynomials over finite fields.

Factorizers return lists of [factor,multiplicity]. The factor part is monic and the information on the leading coefficient of the input polynomial is abandoned.

The algorithm used in square-free factorization is the most primitive one.

The irreducible factorization proceeds as follows.
1. DDF
2. Nullspace computation by Berlekamp algorithm
3. Root finding of minimal polynomials of bases of the nullspace
4. Separation of irreducible factors by the roots

10.3 Elliptic curves on finite fields

Several fundamental operations on elliptic curves over finite fields are provided as built-in functions.

An elliptic curve is specified by a vector \([a \ b] \) of length 2, where \( a, b \) are elements of finite fields. If the current base field is a prime field, then \([a \ b] \) represents \( y^2 = x^3 + ax + b \). If the current base field is a finite field of characteristic 2, then \([a \ b] \) represents \( y^2 + xy = x^3 + ax^2 + b \).

Points on an elliptic curve together with the point at infinity forms an additive group. The addition, the subtraction and the additive inverse operation are provided as ecm_add_ff(), ecm_sub_ff() and ecm_chsgn_ff() respectively. Here the representation of points are as follows.

- \( 0 \) denotes the point at infinity.
- The other points are represented by vectors \([x \ y \ z] \) of length 3 with non-zero \( z \).

\([x \ y \ z] \) represents a projective coordinate and it corresponds to \([x/z \ y/z] \) in the affine coordinate. To apply the above operations to a point \([x \ y] \), \([x \ y \ 1] \) should be used instead as an argument. The result of an operation is also represented by the projective coordinate. As the third coordinate is not always equal to 1, one has to divide the first and the second coordinate by the third one to obtain the affine coordinate.
10.4 Functions for Finite fields

10.4.1 setmod_ff

setmod_ff([prime|poly])
:: Sets/Gets the current base fields.
return number or polynomial
prime prime
poly univariate polynomial irreducible over GF(2)
  • If the argument is a non-negative integer prime, GF(prime) is set as the current base field.
  • If the argument is a polynomial poly, GF(2^deg(poly mod 2)) = GF(2)[t]/(poly(t) mod2) is set as the current base field.
  • If no argument is specified, the modulus indicating the current base field is returned. If the current base field is GF(prime), prime is returned. If it is GF(2^n), the defining polynomial is returned.
  • Any irreducible univariate polynomial over GF(2) is available to set GF(2^n). However the use of defpoly_mod2() is recommended for efficiency.

[174] defpoly_mod2(100);
  x^100+x^15+1
[175] setmod_ff(00);
  x^100+x^15+1
[176] setmod_ff();
  x^100+x^15+1

References
  Section 10.4.13 [deffpoly_mod2], page 155

10.4.2 field_type_ff

field_type_ff()
:: Type of the current base field.
return integer
  • Returns the type of the current base field.
  • If no field is set, 0 is returned. If GF(p) is set, 1 is returned. If GF(2^n) is set, 2 is returned.

[0] field_type_ff();
  0
[1] setmod_ff(3);
  3
[2] field_type_ff();
  1
[3] setmod_ff(x^2+x+1);
  x^2+x+1
[4] field_type_ff();
2

References
Section 10.4.1 [setmod_ff], page 150

10.4.3 field_order_ff

field_order_ff()
:: Order of the current base field.
return integer
• Returns the order of the current base field.
• $q$ is returned if the current base field is $GF(q)$.
[0] field_order_ff();
field_order_ff : current_ff is not set
return toplevel
[0] setmod_ff(3);
3
[1] field_order_ff();
3
[2] setmod_ff(x^2+x+1);
$x^2+x+1$
[3] field_order_ff();
4

References
Section 10.4.1 [setmod_ff], page 150

10.4.4 characteristic_ff

characteristic_ff()
:: Characteristic of the current base field.
return integer
• Returns the characteristic of the current base field.
• $p$ is returned if $GF(p)$, where $p$ is a prime, is set. 2 is returned if $GF(2^n)$ is set.
[0] characteristic_ff();
characteristic_ff : current_ff is not set
return toplevel
[0] setmod_ff(3);
3
[1] characteristic_ff();
3
[2] setmod_ff(x^2+x+1);
$x^2+x+1$
[3] characteristic_ff();
2

References
Section 10.4.1 [setmod_ff], page 150
10.4.5 extdeg_ff

extdeg_ff()
:: Extension degree of the current base field over the prime field.
return integer
- Returns the extension degree of the current base field over the prime field.
- \( GF(p) \alpha \beta^{2^n} \alpha B 1, GF(2^n) \alpha \beta^{2^n} \alpha B n \alpha \beta^{2^n} \alpha B 1 \) is returned if \( GF(p) \), where \( p \) is a prime, is set. \( n \) is returned if \( GF(2^n) \) is set.

[0] extdeg_ff();
extdeg_ff : current_ff is not set
return toplevel
[0] setmod_ff(3);
3
[1] extdeg_ff();
1
[2] setmod_ff(x^2+x+1);
x^2+x+1
[3] extdeg_ff();
2

References
Section 10.4.1 [setmod_ff], page 150

10.4.6 simp_ff

simp_ff(obj)
:: Converts numbers or coefficients of polynomials into elements in finite fields.
return number or polynomial
obj number or polynomial
- Converts numbers or coefficients of polynomials into elements in finite fields.
- It is used to convert integers or integral polynomials into elements of finite fields or polynomials over finite fields.
- An element of a finite field may not have the reduced representation. In such case an application of simp_ff assures the output has the reduced representation.

[0] simp_ff((x+1)^10);
x^10+10*x^9+45*x^8+120*x^7+210*x^6+252*x^5+210*x^4+120*x^3+45*x^2+10*x+1
[1] simp_ff(3);
3
[2] simp_ff((x+1)^10);
1*x^10+1*x^9+1*x+1
[3] ntype(coef(@0,10));
6

References
Section 10.4.1 [setmod_ff], page 150, Section 10.4.8 [limtop], page 153, Section 10.4.10 [gf2ntol], page 154
10.4.7 random_ff

random_ff()
:: Random generation of an element of a finite field.

return element of a finite field

- Generates an element of the current base field randomly.
- The same random generator as in random(), 1random() is used.

[0] random_ff();
r
random_ff : current_ff is not set
return to toplevel
[0] setmod_ff(pari(nextprime,2^40));
1099511627791
[1] random_ff();
561856154357
[2] random_ff();
45141628299

References
Section 10.4.1 [setmod_ff], page 150, Section 6.1.7 [random], page 34, Section 6.1.8 [1random], page 34

10.4.8 lmptop

lmptop(obj)
:: Converts the coefficients of a polynomial over GF(p) into integers.

return integral polynomial

obj polynomial over GF(p)

- Converts the coefficients of a polynomial over GF(p) into integers.
- An element of GF(p) is represented by a non-negative integer r less than p. Each
coefficient of a polynomial is converted into an integer object whose value is r.

[0] setmod_ff(pari(nextprime,2^40));
1099511627791
[1] F=simp_ff((x-1)^10);
1*x^10+1099511627781*x^9+45*x^8+1099511627671*x^7+210*x^6
+1099511627539*x^5+210*x^4+1099511627671*x^3+45*x^2+1099511627781*x+1
[2] setmod_ff(547);
547
[3] F=simp_ff((x-1)^10);
1*x^10+537*x^9+45*x^8+427*x^7+210*x^6+295*x^5+210*x^4+427*x^3+45*x^2+537*x+1
[4] lmptop(F);
x^10+537*x^9+45*x^8+427*x^7+210*x^6+295*x^5+210*x^4+427*x^3+45*x^2+537*x+1
[5] lmptop(coef(F,1));
537
[6] ntype(0); 0

References
Section 10.4.6 [simp_ff], page 152
10.4.9 ntogf2n

ntogf2n(m)
   :: Converts a non-negative integer into an element of GF(2^n).

return element of GF(2^n)

m non-negative integer

- Let m be a non-negative integer. m has the binary representation 
m = m_0 + m_1*2^2 + ... + m_k*2^k. This function returns an element of GF(2^n) = GF(2)[t]/(g(t)), 
m_0+m_1*t+...+m_k*t^k mod g(t).

- Apply simp_ff() to reduce the result.

1. setmod_ff(x^30+x+1);
2. N=ntogf2n(2^100);
3. simp_ff(N);
4. gf2nton(N);
5. 1267650600228229401496703205376
6. 15360

References
Section 10.4.10 [gf2nton], page 154

10.4.10 gf2nton

gf2nton(m)
   :: Converts an element of GF(2^n) into a non-negative integer.

return non-negative integer

m element of GF(2^n)

- The inverse of gf2nton.

1. setmod_ff(x^30+x+1);
2. N=gf2nton(2^100);
3. simp_ff(N);
4. gf2nton(N);
5. gf2nton(simp_ff(N));
6. 1267650600228229401496703205376
7. 15360

References
Section 10.4.10 [gf2nton], page 154

10.4.11 ptofg2n

ptogf2n(poly)
   :: Converts a univariate polynomial into an element of GF(2^n).

return element of GF(2^n)
poly univariate polynomial

- Generates an element of GF(2^n) represented by poly. The coefficients are reduced modulo 2. The output is equal to the result by substituting θ for the variable of poly.
  [1] setmod_ff(x^30+x+1);
  x^30+x+1
  [2] ptogf2n(x^100); 
  (θ^100)

References
Section 10.4.12 [gf2ntop], page 155

10.4.12 gf2ntop

gf2ntop(m[,v])
:: Converts an element of GF(2^n) into a polynomial.

return univariate polynomial
m an element of GF(2^n)
v indeterminate

- Returns a polynomial representing m.
- If v is used as the variable of the output. If v is not specified, the variable of the argument of the latest ptogf2n() call. The default variable is x.
  [1] setmod_ff(x^30+x+1);
  x^30+x+1
  [2] N=simp_ff(gf2ntop(2^100));
  (θ^13+θ^12+θ^11+θ^10)
  [5] gf2ntop(N);
  [207] gf2ntop(N);
  x^13+x^12+x^11+x^10
  [208] gf2ntop(N,t);
  t^13+t^12+t^11+t^10

References
Section 10.4.11 [ptogf2n], page 154

10.4.13 defpoly_mod2

defpoly_mod2(d)
:: Generates an irreducible univariate polynomial over GF(2).

return univariate polynomial
d positive integer

- Defined in ‘fff’.
- An irreducible univariate polynomial of degree d is returned.
- If an irreducible trinomial x^d+x^m+1 exists, then the one with the smallest m is returned. Otherwise, an irreducible pentanomial x^d+x^m1+x^m2+x^m3+1 (m1>m2>m3) is returned. m1, m2 and m3 are determined as follows: Fix m1 as small as possible. Then fix m2 as small as possible. Then fix m3 as small as possible.
References
Section 10.4.1 [setmod_ff], page 150

10.4.14 fctr_ff

fctr_ff(poly)
:: Irreducible univariate factorization over a finite field.

return list

poly = univariate polynomial over a finite field
- Defined in 'ff'.
- Factorize poly into irreducible factors over the current base field.
- The result is a list [[f1, m1],[f2, m2],...], where fi is a monic irreducible factor and mi is its multiplicity.
- The leading coefficient of poly is abandoned.

[178] setmod_ff(2^64-95);
1844674407309551521
[179] fctr_ff(x^5+x+1);
[[1*x+14123390394564558010,1],[1*x+6782485570826905238,1],
[1*x+15987612182027639793,1],[1*x^2+1*x+1,1]]

References
Section 10.4.1 [setmod_ff], page 150

10.4.15 irredcheck_ff

irredcheck_ff(poly)
:: Primality check of a univariate polynomial over a finite field.

return 0|1

poly = univariate polynomial over a finite field
- Defined in 'ff'.
- Returns 1 if poly is irreducible over the current base field. Returns 0 otherwise.

[178] setmod_ff(2^64-95);
1844674407309551521
[179] F=x^10+random_ff( );
x^10+14687973587364016969
[180] irredcheck_ff(F);
1

References
Section 10.4.1 [setmod_ff], page 150

10.4.16 randpoly_ff

randpoly_ff(d,v)
:: Generation of a random univariate polynomial over a finite field.
return polynomial
d positive integer
v indeterminate

- Defined in 'fff'.
- Generates a polynomial of v such that the degree is less than d and the coefficients are in the current base field. The coefficients are generated by \texttt{random_ff()}.

\begin{align*}
[178] & \texttt{setmod_ff(2^64-95);} \\
& 1844674407309551521 \\
[179] & F=x^{10}+\texttt{random_ff();} \\
[180] & \texttt{randpoly_ff(3,x);} \\
& 17135261455478964298*x^2+4766826699653615429*x+18317369440429479651 \\
[181] & \texttt{randpoly_ff(3,x);} \\
& 756598813172050604*x^2+7430075767279665339*x+4699662986224873544 \\
[182] & \texttt{randpoly_ff(3,x);} \\
& 10247781277095450395*x^2+10243690944992524936*x+40638290492888845492
\end{align*}

References
Section 10.4.1 [setmod_ff], page 150, Section 10.4.7 [random_ff], page 153

### 10.4.17 ecm_add_ff, ecm_sub_ff, ecm_chsgn_ff

ecm\_add\_ff(p1,p2,ec)
ecm\_sub\_ff(p1,p2,ec)
ecm\_chsgn\_ff(p1)

:: Addition, Subtraction and additive inverse for points on an elliptic curve.

return vector or 0

p1,p2 vector of length 3 or 0

ec vector of length 2

- Let p1, p2 be points on the elliptic curve represented by ec over the current base field. ecm\_add\_ff(p1,p2,ec), ecm\_sub\_ff(p1,p2,ec) and ecm\_chsgn\_ff(p1) returns p1+p2, p1-p2 and -p1 respectively.
- If the current base field is a prime field of odd order, then ec represents $y^2=x^3+ec[0]x+ec[1]$. If the characteristic of the current base field is 2, then ec represents $y^2+xy=x^3+ec[0]x^2+ec[1]$.
- The point at infinity is represented by 0.
- If an argument denoting a point is a vector of length 3, then it is the projective coordinate. In such a case the third coordinate must not be 0.
- If the result is a vector of length 3, then the third coordinate is not equal to 0 but not necessarily 1. To get the result by the affine coordinate, the first and the second coordinates should be divided by the third coordinate.
- The check whether the arguments are on the curve is omitted.

\begin{align*}
[0] & \texttt{setmod_ff(1125899906842679);} \\
[1] & \texttt{EC=newvect(2,[ptolmp(1),ptolmp(1)]);} \\
[2] & \texttt{Pt1=newvect(3,[1,-412127497938252,1]);}
\end{align*}
[3] Pt2=newvect(3,[6,-252647084363045,1])$
[4] Pt3=ecm_add_ff(Pt1,Pt2,EC);
[ 560137044461222 184453736165476 125 ]
[5] F=y^2-(x^3+EC[0]*x+EC[1])$
[6] subst(F,x,Pt3[0]/Pt3[2],y,Pt3[1]/Pt3[2]); 0
[7] ecm_add_ff(Pt3,ecm_chsgn_ff(Pt3),EC);
0
[8] D=ecm_sub_ff(Pt3,Pt2,EC);
[ 886545905133065 119584559149586 886545905133065 ]
[9] D[0]/D[2]==Pt1[0]/Pt1[2]; 1

References
Section 10.4.1 [setmod_ff], page 150
Appendix A  Appendix

A.1 Details of syntax

\[
\text{<expression>}: \quad \begin{cases} 
\text{'}(\text{<expression>}' ) \\
\text{<expression> } \text{<binary operator> } \text{<expression>} \\
\text{'}+\text{'} \quad \text{<expression>} \\
\text{'}-\text{'} \quad \text{<expression>} \\
\text{<left value>} \text{<assignment operator> } \text{<expression>} \\
\text{<left value>} \text{'}++\text{'} \\
\text{<left value>} \text{'}--\text{'} \\
\text{<left value>} \text{'}++\text{'} \text{<left value>} \\
\text{<left value>} \text{'}--\text{'} \text{<left value>} \\
\text{'}!\text{'} \quad \text{<expression>} \\
\text{<expression>} \text{'}?\text{'} \quad \text{<expression>} \text{'}:\text{'} \quad \text{<expression>} \\
\text{<function>} \text{'}(\text{<express list>}' ) \\
\text{<function>} \text{'}(\text{<express list>}' | \text{<option list>}' ) \\
\text{<string>} \\
\text{<exponent vector>} \\
\text{<atom>} \\
\text{<list>}
\end{cases}
\]

(See Section 4.2.10 [various expressions], page 24)

\[
\text{<left value>}: \\
\quad \text{<program variable>} \text{'}[\text{'}<\text{expression}>\text{']}\text{']}*
\]

\[
\text{<binary operator>}: \\
\quad \text{'}+\text{'} \quad \text{'}-\text{'} \quad \text{'}*\text{'} \quad \text{'}/\text{'} \quad \text{'}^\text{'} \quad \text{'}^\text{'} \quad \text{<exponentiation>} \\
\quad \text{'}==\text{'} \quad \text{'}!=\text{'} \quad \text{'}<\text{'} \quad \text{'}>\text{'} \quad \text{'}<=\text{'} \quad \text{'}>=\text{'} \quad \text{'}\&\text{'} \quad \text{'}|\text{'} \\
\quad \text{'}==\text{'} \quad \text{'}!=\text{'} \quad \text{'}<\text{'} \quad \text{'}>\text{'} \quad \text{'}<=\text{'} \quad \text{'}>=\text{'} \quad \text{'}\&\text{'} \quad \text{'}|\text{'}
\]

\[
\text{<assignment operator>}: \\
\quad \text{'}=\text{'} \quad \text{'}+=\text{'} \quad \text{'}-=\text{'} \quad \text{'}*=\text{'} \quad \text{'}/=\text{'} \quad \text{'}^\text{'} \quad \text{'}^\text{'}
\]

\[
\text{<expr list>}: \\
\quad \text{<empty>} \\
\quad \text{<expression>} \text{'}[\text{',}'<\text{expression}>\text{']}*
\]

\[
\text{<option>}: \\
\quad \text{Character sequence beginning with an alphabetical letter } \text{'}=\text{'} \quad \text{<expression>}
\]

\[
\text{<option list>}: \\
\quad \text{<option>} \\
\quad \text{<option>} \text{'}[\text{',}'<\text{option}>\text{']}*
\]

\[
\text{<list>}: \\
\quad \text{'}[\text{'}<\text{expr list}>\text{'}]
\]

\[
\text{<program variable>}: \\
\quad \text{Sequence of alphabetical letters or numeric digits or } _ \text{ that begins with a capital alphabetical letter } (X,Y,Japan \text{ etc.})
\]
(See Section 4.2.2 [variables and indeterminates], page 19)

<function>
    Sequence of alphabetical letters or numeric digits or _
    that begins with a small alphabetical letter
    (fct, gcd etc.)

<atom>
    <indeterminate>
    <number>

<indeterminate>
    Sequence of alphabetical letters or numeric digits or _
    that begin with a small alphabetical letter
    (a, bCD, c1_2 etc.)

(See Section 4.2.2 [variables and indeterminates], page 19)

<number>
    <rational number>
    <floating point number>
    <algebraic number>
    <complex number>

(See Section 3.2 [Types of numbers], page 13)

<rational number>:
    0, 1, -2, 3/4

-floating point number>:
    0.0, 1.2e10

-algebraic number>:
    newalg(x^2+1), alg(0)^2+1

(See Chapter 9 [Algebraic numbers], page 136)

-complex number>:
    1+0i, 2.3*0i

<string>:
    character sequence enclosed by two '"'s.

<exponent vector>:
    '<<' <expr list> '>>'

(See Chapter 8 [Groebner basis computation], page 107)

-statement>:
    <expression> <terminator>
    <compound statement>
    'break' <terminator>
    'continue' <terminator>
    'return' <terminator>
    'return' <expression> <terminator>
    'if' '{' <expr list> '}' <statement>
    'if' '{' <expr list> '}' <statement> 'else' <statement>
    'for' '{' <expr list> ';' <expr list> ';' <expr list> '}' <statement>
    'do' <statement> 'while' '{' <expr list> '}' <terminator>
    'while' '{' <expr list> '}' <statement>
    'def' <function> '{' <expr list> '}' '{' <variable declaration> <stat list> '}'
‘end (quit)’ <terminator>
(See Section 4.2.5 [statements], page 21)
<terminator>:
‘;’ ‘$’
<variable declaration>:
[‘extern’ <program variable> [‘,’ <program variable>] * <terminator>] *
<compound statement>:
{ <stat list> ‘}’
<stat list>:
[<statement>] *

A.2 Files of user defined functions

There are several files of user defined functions under the standard library directory. (**/usr/local/lib/asir** by default.) Here, we explain some of them.

‘fff’    Univariate factorizer over large finite fields (See Chapter 10 [Finite fields], page 148)

‘gr’     Groebner basis package. (See Chapter 8 [Groebner basis computation], page 107)

‘sp’     Operations over algebraic numbers and factorization, Splitting fields. (See
          Chapter 9 [Algebraic numbers], page 136)

‘alpi’   ‘bgk’
‘cyclic’ ‘katsura’
‘kimura’ Example polynomial sets for benchmarks of Groebner basis computation. (See
          Section 8.8.29 [katsura hkatsura cyclic hcyclic], page 133)

‘defs.h’ Macro definitions. (See Section 4.2.11 [preprocessor], page 25)

‘fctrtst’ Test program of factorization of integral polynomials. It includes ‘factor.tst’
          of REDUCE and several examples for large multiplicity factors. If this file is
          load()’ed, computation will begin immediately. You may use it as a first test
          whether Asir at you hand runs correctly.

‘fctrdta’ This contains example polynomials for factorization. It includes polynomials
          used in ‘fctrtst’. Polynomials contained in vector Alg[] is for the algebraic
          factorization af() (See Section 9.4.10 [asq af af_noalg], page 145).

          [45] load ("sp")$
          [84] load ("fctrdta")$
          [175] cputime (1) $
          0msec
          [176] Alg [5];
          x^9-15*x^6-87*x^3-125
Omsec
[177] af(A1g[5],[newalg(A1g[5])])
[[11],[75*x^2+(10*x^0~7-175*x^#0^4-470*x^#0)*x+(3*x^0~8-45*x^#0^5-261*x^#0^2),1],
[75*x^2*(-10*x^0~7+175*x^#0^4+395*x^#0)*x+(3*x^0~8-45*x^#0^5-261*x^#0^2),1],
[25*x^2+(25*x^0)*x+(#0^8-15*x^#0^5-87*x^#0^2),1],[x^2+(#0)*x+(#0^2),1],
[x+(#0),1]]
3.600sec + gc : 1.040sec

‘ifplot’ Examples for plotting (See Section 7.5.15 [ifplot conplot plot plotover],
page 103). Vector XS[] contains several famous algebraic curves. Variables X, Y,
D, C, S contains something like the suits (Heart, Diamond, Club, and Spade)
of cards.

‘num’ Examples of simple operations on numbers.

‘mat’ Examples of simple operations on matrices.

‘ratint’ Indefinite integration of rational functions. For this, files ‘sp’ and ‘gr’ is necessary. A function ratint() is defined. Its returns a rather complex result.

[0] load("gr")$
[45] load("sp")$
[84] load("ratint")$
[102] ratint(x^6/(x^5+x+1),x);
[1/2*x^2, 
[([#2]*log(-140*x^(-2737*x^#2^2+552*x^2-131)),161*t#2-3-23*t^2+15*t^2-1],
[([#1]*log(-5*x^(-21*x^#1-4)),21*t^1+3*t^1+11]]]

In this example, indefinite integral of the rational function x^6/(x^5+x+1) is computed. The result is a list which comprises two elements: The first element is the rational part of the integral; The second part is the logarithmic part of the integral. The logarithmic part is again a list which comprises finite number of elements, each of which is of form [root*log(poly),defpoly]. This pair should be interpreted to sum up the expression root*log(poly) through all root's root's of the defpoly. Here, poly contains root, and substitution for root is equally applied to poly. The logarithmic part in total is obtained by applying such interpretation to all element pairs in the second element of the result and then summing them up all.

‘primdec’ Primary ideal decomposition of polynomial ideals and prime comptosition of radicals (see Section 8.8.30 [primdec primdec], page 134).

A.3 Input interfaces

A command line editing facility and a history substitution facility are built-in for DOS, Windows version of Asir. UNIX versions of Asir do not have such built-in facilties. Instead, the following input interfaces are prepared. This are also available from our ftp server. As for our ftp server See Section 1.3 [How to get Risa/Asir], page 2.

On Windows, ‘asirgui.exe’ has a copy and paste functionality different from Windows convention. Press the left button of the mouse and drag the mouse cursor on a text, then the text is selected and is highlighted. When the button is released, highlighted text returns to the normal state and it is saved in the copy buffer. If the right button is pressed, the
text in the copy buffer is inserted at the current text cursor position. Note that the existing
text is read-only and one cannot modify it.

A.3.1 fep

Fep is a general purpose front end processor. The author is K. Utashiro (SRA Inc.).
Under fep, emacs- or vi-like command line editing and esh-like history substitution are
available for UNIX commands, including `asir'.

```bash
% fep asir
...
[0] fctr(x^5-1);
[[1,1],[x-1,1],[x^4+x^3+x^2-x+1,1]]
[1] !! /* !!+Return */
fctr(x^5-1);
/* The last input appears. */
...
/* Edit+Return */
fctr(x^5+1);
[[1,1],[x+1,1],[x^4-x^3+x^2-x+1,1]]
```

Fep is a free software and the source is available. However machines or operating systems on
which the original one can run are limited. The modified version by us running on several
unsupported environments is available from our ftp server.

A.3.2 asir.el

`asir.el' is a GNU Emacs interface for Asir. The author is Koji Miyajima
(YWE25250@pcvan.or.jp). In `asir.el', completion of file names and command names is
realized other than the ordinary editing functions which are available on Emacs.

`asir.el' is distributed on PC-VAN. The version where several changes have been made
according to the current version of Asir is available via ftp.

The way of setting up and the usage can be found at the top of `asir.el'.

A.4 Library interfaces

It is possible to link an Asir library to use the functionalities of Asir from other programs.
The necessary libraries are included in the OpenXM distribution (http://www.math.kobe-
-u.ac.jp/OpenXM). At present only the OpenXM interfaces are available. Here we assume
that OpenXM is already installed. In the following `$OpenXM_HOME' denotes the OpenXM
root directory. All the library files are placed in `$OpenXM_HOME/lib'. There are three kinds
of libraries as follows.

- `libasir.a'
  It does not contain the functionalities related to PARI and X11. Only `libasir-gc.a'
is necessary for linking.

- `libasir_pari.a'
  It does not contain the functionalities related to X11. `libasir-gc.a', `libpari.a'
  are necessary for linking.

- `libasir_pari_x.a'
  All the functionalities are included. `libasir-gc.a', `libpari.a' and libraries related
to X11 are necessary for linking.
• int asirox_init(int byteorder)
  It initializes the library. byteorder specifies the format of binary CMO data on the memory. If byteorder is 0, the byteorder native to the machine is used. If byteorder is 1, the network byteorder is used. It returns 0 if the initialization is successful, -1 otherwise.
• void asirox_push_cmo(void *cmo)
• int asirox_peek_cmo_size()
  It returns the size of the object at the top of the stack as CMO object. It returns -1 if the object cannot be converted into CMO object.
• int asirox_pop_cmo(void *cmo, int limit)
  It pops an Asir object at the top of the stack and it converts the object into CMO data. If the size of the CMO data is not greater than limit, then the data is written in cmo and the size is returned. Otherwise -1 is returned. The size of the array pointed by cmo must be at least limit. In order to know the size of converted CMO data in advance asirox_peek_cmo_size is called.
• void asirox_push_cmd(int cmd)
  It executes a stack machine command cmd.
• void asirox_execute_string(char *str)
  It evaluates str as a string written in the Asir user language. The result is pushed onto the stack.

A program calling the above functions should include `$OpenXM_HOME/include/asir/ox.h'.
In this file all the definitions of OpenXM tags and commands. The following example
(`$OpenXM_HOME/doc/oxlib/test3.c') illustrates the usage of the above functions.

    #include <asir/ox.h>
    #include <signal.h>

    main(int argc, char **argv)
    {
        char buf[BUFSIZ+1];
        int c;
        unsigned char sendbuf[BUFSIZ+10];
        unsigned char *result;
        unsigned char h[3];
        int len,i,j;
        static int result_len = 0;
        char *kwds,*budy;
        unsigned int cmd;

        signal(SIGINT,SIG_IGN);
        asirox_init(1); /* 1: network byte order; 0: native byte order */
        result_len = BUFSIZ;
        result = (void *)malloc(BUFSIZ);
        while ( 1 ) {
            printf("Input>"); fflush(stdout);
            fgets(buf,BUFSIZ,stdin);
for ( i = 0; buf[i] && isspace(buf[i]); i++ )
if ( !buf[i] )
    continue;
kwd = buf+i;
for ( ; buf[i] && !isspace(buf[i]); i++ )
    buf[i] = 0;
bdy = buf+i+1;
if ( !strcmp(kwd,"asir") ) {
    sprintf(sendbuf,"%s",bdy);
    asir_ox_execute_string(sendbuf);
} else if ( !strcmp(kwd,"push") ) {
    h[0] = 0;
    h[2] = 0;
    j = 0;
    while ( 1 ) {
        for ( ; (c= *bdy) && isspace(c); bdy++ )
            if ( !c )
                break;
        else if ( h[0] ) {
            h[1] = c;
            sendbuf[j++] = strtol(h,0,16);
            h[0] = 0;
        } else
            h[0] = c;
        bdy++;
    }
    if ( h[0] )
        fprintf(stderr,"Number of characters is odd.\n");
    else {
        sendbuf[j] = 0;
        asir_ox_push_cmo(sendbuf);
    }
} else if ( !strcmp(kwd,"cmd") ) {
    cmd = atoi(bdy);
    asir_ox_push_cmd(cmd);
} else if ( !strcmp(kwd,"pop") ) {
    len = asir_ox_peek_cmo_size();
    if ( !len )
        continue;
    if ( len > result_len ) {
        result = (char *)realloc(result,len);
        result_len = len;
    }
    asir_ox_pop_cmo(result,len);
    printf("Output>"); fflush(stdout);
    printf("\n");
    for ( i = 0; i < len; ) {
        printf("%02x ",result[i]);
    }
if (!i%16) {
    printf("\n");
}
printf("\n");
}
}

This program receives a line in the form of keyword body as an input and it executes the following operations according to keyword.

- **asir body**
  body is regarded as an expression written in the Asir user language. The expression is evaluated and the result is pushed onto the stack. asir Ox_execute_string() is called.

- **push body**
  body is regarded as a CMO object in the hexadecimal form. The CMO object is converted into an Asir object and is pushed onto the stack. asir Ox_push_cmo() is called.

- **pop**
  The object at the top of the stack is converted into a CMO object and it is displayed in the hexadecimal form. asir Ox_peek_cmo_size() and asir Ox_pop_cmo() are called.

- **cmd body**
  body is regarded as an SM command and the command is executed. asir Ox_push_ cmd() is called.

## A.5 Appendix

### A.5.1 Version 990831

Four years have passed since the last distribution. Though the look and feel seem unchanged, internally there are several changes such as 32-bit representation of bignums. Plotting facilities are not available on Windows.

If you have files created by bsave on the older version, you have to use bload27 to read such files.

### A.5.2 Version 950831

#### A.5.2.1 Debugger

- One can enter the debug mode anytime.
- A command finish has been appended.
- One can examine any stack frame with up, down and frame.
- A command trace has been appended.
A.5.2.2 Built-in functions

- One can specify a main variable for \texttt{sdiv()} etc.
- Functions for polynomial division over finite fields such as \texttt{sdinv()} have been appended.
- \texttt{det()}, \texttt{res()} can produce results over finite fields.
- \texttt{vto1()}, conversion from a vector to a list has been appended.
- \texttt{map()} has been appended.

A.5.2.3 Groebner basis computation

- Functions for Groebner basis computation have been implemented as built-in functions.
- \texttt{gr() and hgr() have been changed to gr()} and \texttt{hgr()} respectively.
- \texttt{gr() and hgr()} requires explicit specification of an ordering type.
- Extension of specification of a term ordering type.
- Groebner basis computations over finite fields.
- Lex order Groebner basis computation via a modular change of ordering algorithm.
- Several new built-in functions.

A.5.2.4 Others

- Implementation of tools for distributed computation.
- Application of modular computation for GCD computation over algebraic number fields.
- Implementation of primary decomposition of ideals.
- Porting to Windows.

A.5.3 Version 9.40-420

The first public version.

A.6 References

[Batut et al.]

[Becker, Weispfenning]

[Boehm, Weiser]

[Gebauer, Moeller]
[Giovini et al.]

[Noro,Takeshima]

[Noro,Yokoyama]
Noro, M., Yokoyama, K., "A Modular Method to Compute the Rational Univariate Representation of Zero-Dimensional Ideals", J. Symb. Comp. 28/1 (1999), 243-263.

[Shimoyama,Yokoyama]

[Shoup]

[Traverso]

[Weber]
# Index

% 0
% ............................................. 47

A
af ........................................... 145
af_noalg .................................... 145
alg ........................................... 142
algptorat ................................... 143
algv .......................................... 142
append ....................................... 58
arfreg ....................................... 65
args .......................................... 70
ascitostr .................................... 72
asq ........................................... 145

dp_etow ....................................... 129
dp_f4_main ................................... 121
dp_f4_mod_main ............................... 121
dp_gr_flags .................................. 121
dp_gr_main .................................... 120
dp_gr_mod_main ............................... 120
dp_gr_print ................................... 121
dp_hc .......................................... 126
dp_hm .......................................... 126
dp_homo ....................................... 124
dp_ht .......................................... 126
dp_lcm ......................................... 127
dp_mag ......................................... 130
dp_mbase ..................................... 129
dp_mod ......................................... 123
dp_nf .......................................... 125
dp_nf_mod ..................................... 125
dp_ord .......................................... 121
dp_prim ........................................ 124
dp_ptod ........................................ 122
dp_ptorp ..................................... 124
dp_rat .......................................... 123
dp_red .......................................... 130
dp_red .......................................... 130
dp_redble ..................................... 128
dp_rest ......................................... 126
dp_sp .......................................... 131
dp_sp_mod ..................................... 131
dp_subd ........................................ 128
dp_sugar ....................................... 127
dp_td ........................................... 127
dp_true_nf .................................... 125
dp_true_nf_mod ............................... 125
dp_vtoe ....................................... 129
draw_obj ..................................... 105

B
blad ........................................... 75
blad27 ......................................... 76
bsave ......................................... 75

car ............................................ 58
cdr ............................................. 58
characteristic_ff ............................ 151
clear_canvas ................................ 105
close_file .................................... 77
cosf ........................................... 43
conj ............................................ 36
conplot ....................................... 103
cons .......................................... 58
cputime ....................................... 83
cr_goda ....................................... 144
crl ............................................... 79
cyclic ......................................... 133

d debug ........................................ 80
defpoly ....................................... 141
defpoly_mod2 ................................ 155
deg ............................................. 43
delete_history ............................... 86
det ............................................ 64
deval .......................................... 36
dgr ............................................. 115
diff ............................................ 48
dn ............................................... 35
dp_dehomo .................................... 124
dp_dtop ....................................... 123

e ecm_add_ff .................................. 157
ecm_chagn_ff ................................ 157
ecm_sub_ff ................................... 157
end ............................................ 73
error .......................................... 81
eval ........................................... 36
eval_str ....................................... 71
extdeg_ff ..................................... 152
<table>
<thead>
<tr>
<th>F</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>fac</td>
<td>katsura</td>
</tr>
<tr>
<td>fcotr</td>
<td>kmul</td>
</tr>
<tr>
<td>fcotr_ff</td>
<td>kfsquare</td>
</tr>
<tr>
<td>field_order_ff</td>
<td>ktsmul</td>
</tr>
<tr>
<td>field_type_ff</td>
<td></td>
</tr>
<tr>
<td>flist</td>
<td></td>
</tr>
<tr>
<td>funargs</td>
<td></td>
</tr>
<tr>
<td>functor</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>gb_comp</td>
<td>length</td>
</tr>
<tr>
<td>gcd</td>
<td>length</td>
</tr>
<tr>
<td>generate_port</td>
<td>lex_hensel</td>
</tr>
<tr>
<td>get_byte</td>
<td>lex_hensel_gsl</td>
</tr>
<tr>
<td>get_line</td>
<td>lex_t1</td>
</tr>
<tr>
<td>get_rootdir</td>
<td>lunwrap</td>
</tr>
<tr>
<td>getenv</td>
<td>load</td>
</tr>
<tr>
<td>getopt</td>
<td>lprime</td>
</tr>
<tr>
<td>gf2nton</td>
<td>lrandom</td>
</tr>
<tr>
<td>gf2ntop</td>
<td></td>
</tr>
<tr>
<td>gr</td>
<td></td>
</tr>
<tr>
<td>gr_minipoly</td>
<td></td>
</tr>
<tr>
<td>gr_mod</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>hycyclic</td>
<td>map</td>
</tr>
<tr>
<td>heap</td>
<td>mindeg</td>
</tr>
<tr>
<td>help</td>
<td>minipoly</td>
</tr>
<tr>
<td>hgr</td>
<td>minipoly</td>
</tr>
<tr>
<td>hkatsura</td>
<td>modfcotr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>iand</td>
<td>newalg</td>
</tr>
<tr>
<td>idiv</td>
<td>newbytearray</td>
</tr>
<tr>
<td>ifplot</td>
<td>newmat</td>
</tr>
<tr>
<td>igcd</td>
<td>newstruct</td>
</tr>
<tr>
<td>igcdcntl</td>
<td>newvect</td>
</tr>
<tr>
<td>ilcm</td>
<td>nm</td>
</tr>
<tr>
<td>int32ton</td>
<td>nmono</td>
</tr>
<tr>
<td>inv</td>
<td>ntogf2n</td>
</tr>
<tr>
<td>ior</td>
<td>ntoint32</td>
</tr>
<tr>
<td>irem</td>
<td>ntype</td>
</tr>
<tr>
<td>irreduce_ff</td>
<td></td>
</tr>
<tr>
<td>iishift</td>
<td></td>
</tr>
<tr>
<td>ixor</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>open_canvas</td>
</tr>
<tr>
<td>open_file</td>
</tr>
<tr>
<td>ord</td>
</tr>
<tr>
<td>output</td>
</tr>
<tr>
<td>ox_cmo_rpc</td>
</tr>
<tr>
<td>ox_execute_string</td>
</tr>
<tr>
<td>ox_flush</td>
</tr>
<tr>
<td>ox_get</td>
</tr>
<tr>
<td>ox_get_serverinfo</td>
</tr>
<tr>
<td>ox_launch</td>
</tr>
<tr>
<td>U</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>V</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>W</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
# Table of Contents

1 **Introduction** .................................................. 1  
   1.1 Organization of the Manual ................................ 1  
   1.2 Notation ....................................................... 1  
   1.3 How to get Risa/Asir ........................................ 2  

2 **Risa/Asir** ....................................................... 3  
   2.1 Risa and Asir .................................................. 3  
   2.2 Features of Asir .............................................. 3  
   2.3 Installation ................................................... 4  
      2.3.1 UNIX binary version .................................... 4  
      2.3.2 UNIX source code version .............................. 4  
      2.3.3 Windows version ....................................... 5  
   2.4 Command line options ....................................... 5  
   2.5 Environment variable ....................................... 6  
   2.6 Starting and Terminating an Asir session ............... 7  
   2.7 Interruption .................................................. 8  
   2.8 Error handling .............................................. 8  
   2.9 Referencing results and special numbers ............... 9  

3 **Data types** ..................................................... 10  
   3.1 Types in Asir ................................................ 10  
   3.2 Types of numbers .......................................... 13  
   3.3 Types of indeterminates ................................... 15  

4 **User language Asir** .......................................... 17  
   4.1 Syntax — Difference from C language ...................... 17  
   4.2 Writing user defined functions ............................ 18  
      4.2.1 User defined functions ............................... 18  
      4.2.2 variables and indeterminates ....................... 19  
      4.2.3 parameters and arguments ............................ 20  
      4.2.4 comments .............................................. 21  
      4.2.5 statements ............................................ 21  
      4.2.6 return statement ...................................... 22  
      4.2.7 if statement .......................................... 22  
      4.2.8 loop, break, return, continue ....................... 22  
      4.2.9 structure definition ................................. 23  
      4.2.10 various expressions .................................. 24  
      4.2.11 preprocessor ......................................... 25  
      4.2.12 option ................................................. 26
5 Debugger ........................................ 27
  5.1 What is Debugger .............................. 27
  5.2 Debugger commands ............................ 27
  5.3 Execution example of debugger ............ 29
  5.4 Sample file of initialization file for Debugger ............................. 30

6 Built-in Function .............................. 31
  6.1 Numbers .................................... 31
     6.1.1 idiv, irem .................................. 31
     6.1.2 fac ........................................ 31
     6.1.3 igcd, igcdcntl ............................. 32
     6.1.4 ilcm ....................................... 33
     6.1.5 inv ......................................... 33
     6.1.6 prime, lprime ............................. 33
     6.1.7 random ..................................... 34
     6.1.8 lrandom ..................................... 34
     6.1.9 mt_save, mt_load ........................... 35
     6.1.10 nm, dn ...................................... 35
     6.1.11 conj, real, imag .......................... 36
     6.1.12 eval, deval ................................ 36
     6.1.13 pari ........................................ 37
     6.1.14 setprec ..................................... 38
     6.1.15 setmod ...................................... 39
     6.1.16 ntoint32, int32ton ........................ 39
  6.2 Bit operations .................................. 40
     6.2.1 iand, ior, ixor ............................ 40
     6.2.2 ishift ....................................... 40
  6.3 operations with polynomials and rational expressions .......... 41
     6.3.1 var ........................................... 41
     6.3.2 vars ........................................ 41
     6.3.3 uc .......................................... 42
     6.3.4 coef ......................................... 42
     6.3.5 deg, mindeg ................................ 43
     6.3.6 mmono ....................................... 43
     6.3.7 ord .......................................... 44
     6.3.8 sdiv, sdivm, srem, sremm, sqr, sqrm .... 44
     6.3.9 tdiv .......................................... 46
     6.3.10 % ............................................ 46
     6.3.11 subst, ps subst ............................ 47
     6.3.12 diff ........................................ 48
     6.3.13 res .......................................... 48
     6.3.14 fctr, sqfr .................................. 49
     6.3.15 ufctrhint .................................. 49
     6.3.16 modfctr .................................... 51
     6.3.17 ptozp ....................................... 51
     6.3.18 prim, cont .................................. 52
     6.3.19 gcd, gcdz .................................. 52
     6.3.20 red ......................................... 53
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Univariate polynomials</td>
<td>54</td>
</tr>
<tr>
<td>6.4.1</td>
<td>umul, umul_ff, usquare, usquare_ff, utmul, utmul_ff</td>
<td>54</td>
</tr>
<tr>
<td>6.4.2</td>
<td>kmul, ksquare, ktmul</td>
<td>55</td>
</tr>
<tr>
<td>6.4.3</td>
<td>set_upkara, set_upmask, set_upfft</td>
<td>56</td>
</tr>
<tr>
<td>6.4.4</td>
<td>utrunc, udecomp, ureverse</td>
<td>56</td>
</tr>
<tr>
<td>6.4.5</td>
<td>uinv_as_power_series, ureverse_inv_as_power_series</td>
<td>57</td>
</tr>
<tr>
<td>6.4.6</td>
<td>udiv, urem, uremymul, uremymul_precomp, ugcd</td>
<td>57</td>
</tr>
<tr>
<td>6.5</td>
<td>Lists</td>
<td>58</td>
</tr>
<tr>
<td>6.5.1</td>
<td>car, cdr, cons, append, reverse, length</td>
<td>58</td>
</tr>
<tr>
<td>6.6</td>
<td>Arrays</td>
<td>60</td>
</tr>
<tr>
<td>6.6.1</td>
<td>newvect</td>
<td>60</td>
</tr>
<tr>
<td>6.6.2</td>
<td>vtol</td>
<td>61</td>
</tr>
<tr>
<td>6.6.3</td>
<td>newbytearray</td>
<td>61</td>
</tr>
<tr>
<td>6.6.4</td>
<td>newmat</td>
<td>62</td>
</tr>
<tr>
<td>6.6.5</td>
<td>size</td>
<td>63</td>
</tr>
<tr>
<td>6.6.6</td>
<td>det</td>
<td>63</td>
</tr>
<tr>
<td>6.6.7</td>
<td>qsort</td>
<td>64</td>
</tr>
<tr>
<td>6.7</td>
<td>Structures</td>
<td>64</td>
</tr>
<tr>
<td>6.7.1</td>
<td>newstruct</td>
<td>64</td>
</tr>
<tr>
<td>6.7.2</td>
<td>arfreg</td>
<td>65</td>
</tr>
<tr>
<td>6.8</td>
<td>Types</td>
<td>67</td>
</tr>
<tr>
<td>6.8.1</td>
<td>type</td>
<td>67</td>
</tr>
<tr>
<td>6.8.2</td>
<td>ntype</td>
<td>68</td>
</tr>
<tr>
<td>6.8.3</td>
<td>vtype</td>
<td>69</td>
</tr>
<tr>
<td>6.9</td>
<td>Operations on functions</td>
<td>69</td>
</tr>
<tr>
<td>6.9.1</td>
<td>functor, args, funargs</td>
<td>69</td>
</tr>
<tr>
<td>6.10</td>
<td>Strings</td>
<td>70</td>
</tr>
<tr>
<td>6.10.1</td>
<td>rtostr</td>
<td>70</td>
</tr>
<tr>
<td>6.10.2</td>
<td>strtov</td>
<td>71</td>
</tr>
<tr>
<td>6.10.3</td>
<td>eval_str</td>
<td>71</td>
</tr>
<tr>
<td>6.10.4</td>
<td>strtoascii, asciiotocstr</td>
<td>72</td>
</tr>
<tr>
<td>6.10.5</td>
<td>str_len, str_chr, sub_str</td>
<td>72</td>
</tr>
<tr>
<td>6.11</td>
<td>Inputs and Outputs</td>
<td>73</td>
</tr>
<tr>
<td>6.11.1</td>
<td>end, quit</td>
<td>73</td>
</tr>
<tr>
<td>6.11.2</td>
<td>load</td>
<td>73</td>
</tr>
<tr>
<td>6.11.3</td>
<td>which</td>
<td>74</td>
</tr>
<tr>
<td>6.11.4</td>
<td>output</td>
<td>74</td>
</tr>
<tr>
<td>6.11.5</td>
<td>bsave, bload</td>
<td>75</td>
</tr>
<tr>
<td>6.11.6</td>
<td>bload27</td>
<td>76</td>
</tr>
<tr>
<td>6.11.7</td>
<td>print</td>
<td>77</td>
</tr>
<tr>
<td>6.11.8</td>
<td>open_file, close_file, get_line, get_byte, put_byte, purge_stdin</td>
<td>77</td>
</tr>
<tr>
<td>6.12</td>
<td>Miscellaneous</td>
<td>79</td>
</tr>
<tr>
<td>6.12.1</td>
<td>ctrl</td>
<td>79</td>
</tr>
<tr>
<td>6.12.2</td>
<td>debug</td>
<td>80</td>
</tr>
</tbody>
</table>
7 Distributed computation ................. 88
  7.1 OpenXM .................................. 88
  7.2 Mathcap .................................. 89
  7.3 Stackmachine commands .................. 89
  7.4 Debugging ................................ 90
     7.4.1 Error object .......................... 90
     7.4.2 Resetting a server .................... 90
     7.4.3 Pop-up command window for debugging .... 91
  7.5 Functions for distributed computation .......... 91
     7.5.1 ox_launch, ox_launch_nox, ox_shutdown .... 91
     7.5.2 ox_launch_generic ..................... 93
     7.5.3 generate_port, try_bind_listen, try_connect, try_accept, register_server ... 94
     7.5.4 'ox_asir' ................................ 95
     7.5.5 ox_rpc, ox_cmo_rpc, ox_execute_string .... 95
     7.5.6 ox_reset, ox_intr, register_handler .... 96
     7.5.7 ox_push_cmo, ox_push_local ............ 97
     7.5.8 ox_pop_cmo, ox_pop_local ............. 98
     7.5.9 ox_push_cmd, ox_sync ................... 98
  7.5.10 ox_get ................................ 99
  7.5.11 ox_pops ................................ 99
  7.5.12 ox_select ............................. 100
  7.5.13 ox_flush ............................... 100
  7.5.14 ox_get_serverinfo ..................... 101
  7.5.15 ifplot, conplot, plot, plotover .......... 102
  7.5.16 open_canvas, clear_canvas, draw_obj ....... 104
8 Groebner basis computation .............. 106
  8.1 Distributed polynomial ..................... 106
  8.2 Reading files ................................ 107
  8.3 Fundamental functions ....................... 107
  8.4 Controlling Groebner basis computations .... 108
  8.5 Setting term orderings ....................... 111
  8.6 Groebner basis computation with rational function coefficients
                      ........................................... 113
  8.7 Change of ordering ............................ 113
  8.8 Functions for Groebner basis computation .... 114
    8.8.1 gr, hgr, gr_mod, dgr ...................... 114
    8.8.2 lex_hensel, lex_tl, tolex, tolex_d, tolex_tl
                      ........................................... 115
    8.8.3 lex_hensel_gsl, tolex_gsl, tolex_gsl_d .... 116
    8.8.4 gr_minipoly, minipoly ..................... 117
    8.8.5 tolexm, minipolym ......................... 118
    8.8.6 dp_gr_main, dp_gr_mod_main ............... 119
    8.8.7 dp_f4_main, dp_f4_mod_main ............... 119
    8.8.8 dp_gr_flags, dp_gr_print ................. 120
    8.8.9 dp_ord .................................. 120
    8.8.10 dp_ptod ................................ 121
    8.8.11 dp_dtop ................................ 121
    8.8.12 dp_mod, dp_rat ........................... 122
    8.8.13 dp_homo, dp_dehomo ....................... 122
    8.8.14 dp_ptozp, dp_prim ......................... 123
    8.8.15 dp_nf, dp_nf_mod, dp_true_nf, dp_true_nf_mod
                      ........................................... 124
    8.8.16 dp_hm, dp_ht, dp_hc, dp_rest ............. 125
    8.8.17 dp_td, dp_sugar ......................... 126
    8.8.18 dp_lcm ................................ 126
    8.8.19 dp_redble ................................ 127
    8.8.20 dp_subd ................................ 127
    8.8.21 dp_vtoe, dp_etov .......................... 127
    8.8.22 dp_mbase ................................ 128
    8.8.23 dp_mag .................................. 128
    8.8.24 dp_red, dp_red_mod ........................ 129
    8.8.25 dp_sp, dp_sp_mod .......................... 130
    8.8.26 p_nf, p_nf_mod, p_true_nf, p_true_nf_mod 130
    8.8.27 p_terms ................................ 131
    8.8.28 gb_comp ................................ 131
    8.8.29 katsura, hkatsura, cyclic, hcyclic ........ 132
    8.8.30 primdec, primedec ......................... 133
9 Algebraic numbers ......................... 134
  9.1 Representation of algebraic numbers .................. 134
  9.2 Operations over algebraic numbers .................. 135
  9.3 Operations for uni-variate polynomials over an algebraic
     number field ............................................. 137
     9.3.1 GCD ................................................. 137
     9.3.2 Square-free factorization and Factorization .... 137
     9.3.3 Splitting fields .................................... 138
  9.4 Summary of functions for algebraic numbers ........ 139
     9.4.1 newalg ............................................ 139
     9.4.2 defpoly ........................................... 139
     9.4.3 alg ............................................... 140
     9.4.4 algv ............................................... 140
     9.4.5 simpalg ........................................... 140
     9.4.6 algptorat .......................................... 141
     9.4.7 rattoalgp .......................................... 141
     9.4.8 cr_gcd ............................................. 142
     9.4.9 sp_norm ............................................ 142
     9.4.10 asq, af, af_noalg ................................ 143
     9.4.11 sp, sp_noalg ...................................... 144

10 Finite fields ......................................... 145
  10.1 Representation of finite fields ....................... 145
  10.2 Univariate polynomials on finite fields .............. 146
  10.3 Elliptic curves on finite fields ...................... 146
  10.4 Functions for Finite fields .......................... 147
     10.4.1 setmod_ff ........................................ 147
     10.4.2 field_type_ff .................................... 147
     10.4.3 field_order_ff ................................... 148
     10.4.4 characteristic_ff ............................... 148
     10.4.5 extdeg_ff ....................................... 149
     10.4.6 simp_ff .......................................... 149
     10.4.7 random_ff ....................................... 150
     10.4.8 lmp/top ......................................... 150
     10.4.9 ntoa2 ............................................ 151
     10.4.10 gf2nton ........................................ 151
     10.4.11 ptoa2 ........................................... 151
     10.4.12 gf2ntop ........................................ 152
     10.4.13 defpoly_mod2 .................................... 152
     10.4.14 fctr_ff ......................................... 153
     10.4.15 irredcheck_ff ................................... 153
     10.4.16 randpoly_ff ..................................... 153
     10.4.17 ecm_add_ff, ecm_sub_ff, ecmchsng_ff ........... 154
Appendix A  Appendix .......................... 156
  A.1 Details of syntax .................................. 156
  A.2 Files of user defined functions .................. 158
  A.3 Input interfaces ................................ 159
    A.3.1 fep ....................................... 160
    A.3.2 asir.el .................................... 160
  A.4 Library interfaces ............................... 160
  A.5 Appendix ....................................... 163
    A.5.1 Version 990831 ............................. 163
    A.5.2 Version 950831 ............................. 163
      A.5.2.1 Debugger ............................. 163
      A.5.2.2 Built-in functions .................... 164
      A.5.2.3 Groebner basis computation .......... 164
      A.5.2.4 Others ................................. 164
    A.5.3 Version 940420 ............................. 164
  A.6 References .................................... 164

Index .................................................. 166